Selected Decision Problems for Square-Refinement Collage Grammars

  • Frank Drewes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7020)


We consider collage grammars whose rules subdivide the unit square into smaller and smaller rectangles. The decidability status of selected decision problems for this type of grammars is surveyed: the membership problem, the emptiness and finiteness problems, connectedness and disconnectedness of the generated pictures, and the question whether a generated collage contains a rectangle whose lower-left corner is a point on the diagonal.


Iterate Function System Graph Grammar Quadratic Time Membership Problem Index Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)zbMATHGoogle Scholar
  2. 2.
    Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical Systems Theory 20, 83–127 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bozapalidis, S.: Picture deformation. Acta Informatica 45, 1–31 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  5. 5.
    Drewes, F.: Language theoretic and algorithmic properties of d-dimensional collages and patterns in a grid. Journal of Computer and System Sciences 53, 33–60 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Drewes, F.: Tree-based generation of languages of fractals. Report 2/99, Univ. Bremen (1999); revised version appeared in Theoretical Computer ScienceGoogle Scholar
  7. 7.
    Drewes, F.: Tree-based picture generation. Theoretical Computer Science 246, 1–51 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Drewes, F.: Grammatical Picture Generation – A Tree-Based Approach. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Drewes, F., Engelfriet, J.: Decidability of the finiteness of ranges of tree transductions. Information and Computation 145, 1–50 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drewes, F., Engelfriet, J.: Branching synchronization grammars with nested tables. Journal of Computer and System Sciences 68, 611–656 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Drewes, F., Ewert, S., Klempien-Hinrichs, R., Kreowski, H.-J.: Computing raster images from grid picture grammars. Journal of Automata, Languages and Combinatorics 8, 499–519 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1, ch. 2, pp. 95–162. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  13. 13.
    Drewes, F., Kreowski, H.-J.: (Un-)decidability of geometric properties of pictures generated by collage grammars. Fundamenta Informaticae 25, 295–325 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Drewes, F., Kreowski, H.-J.: Picture generation by collage grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages, and Tools, vol. II, ch. 11, pp. 397–457. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  15. 15.
    Dube, S.: Undecidable problems in fractal geometry. Complex Systems 7, 423–444 (1993)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dube, S.: Fractal geometry, Turing machines, and divide-and-conquer recurrences. RAIRO Theoretical Informatics and Applications 28, 405–423 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ewert, S.: Random context picture grammars: The state of the art. In: Drewes, F., Habel, A., Hoffmann, B., Plump, D. (eds.) Manipulation of Graphs, Algebras and Pictures. Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 135–147 (2009)Google Scholar
  18. 18.
    Ewert, S., v.d. Walt, A.P.: Random context picture grammars. Publicationes Mathematicae (Debrecen) 54 (Supp.), 763–786 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  20. 20.
    Habel, A., Kreowski, H.-J.: May we introduce to you: Hyperedge replacement. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 15–26. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  21. 21.
    Habel, A., Kreowski, H.-J.: Pretty patterns produced by hyperedge replacement. In: Göttler, H., Schneider, H.-J. (eds.) WG 1987. LNCS, vol. 314, pp. 32–45. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  22. 22.
    Habel, A., Kreowski, H.-J.: Collage grammars. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 411–429. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  23. 23.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  24. 24.
    Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Academic Press, New York (1979)zbMATHGoogle Scholar
  25. 25.
    Rosenfeld, A., Siromoney, R.: Picture languages – a survey. Languages of Design 1, 229–245 (1993)Google Scholar
  26. 26.
    Ruohonen, K.: Reversible machines and Post’s correspondence problem for biprefix morphisms. EIK – Journal on Information Processing and Cybernetics 12, 579–595 (1985)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Younger, D.H.: Recognition and parsing of context-free languages in time n 3. Information and Control 10, 189–208 (1967)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frank Drewes
    • 1
  1. 1.Department of Computing ScienceUmeå UniversitySweden

Personalised recommendations