Projective Geometry of Randers Spaces

  • Xinyue Cheng
  • Zhongmin Shen

Abstract

Consider a spray \( G = y^i \frac{\partial } {{\partial x^i }} - 2G^i \frac{\partial } {{\partial y^i }} \) on an n-dimensional manifold M. The geodesics of G are locally characterized by
$$ \frac{{d^2 x^i }} {{dt^2 }} + 2G^i \left( {x,\frac{{dx}} {{dt}}} \right) = 0.$$
(5.1)

Keywords

Projective Geometry Finsler Space Finsler Geometry Finsler Metrics Weyl Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [BaMa]
    S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51(1997), 385–406.MathSciNetMATHGoogle Scholar
  2. [BaPa]
    S. Bácsó and I. Papp, A note on a generalized Douglas space, Periodica Math. Hungarica 48(2004), 181–184.MATHCrossRefGoogle Scholar
  3. [ChSh]
    X. Cheng and Z. Shen, Randers metrics of scalar flag curvature, Journal of the Australian Mathematical Society, 87(2009), 359–370.MathSciNetMATHCrossRefGoogle Scholar
  4. [Do]
    J. Douglas, The general geometry of paths, Ann. of Math., 29(1927–1928), 143–168.MathSciNetCrossRefGoogle Scholar
  5. [Ma]
    M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, N. S. 34(1980), 303–315.MathSciNetMATHGoogle Scholar
  6. [NhShTa]
    B. Najafi, Z. Shen and A. Tayebi, On a projective class of Finsler metrics, Publ. Math. Debrecen, 70(2007), 211–219MathSciNetMATHGoogle Scholar
  7. [Sa]
    T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor N. S. 38(1982), 211–219.MathSciNetMATHGoogle Scholar
  8. [Sh1]
    Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, In: “A Sampler of Finsler Geometry ”, MSRI series, Cambridge University Press, 2004.Google Scholar
  9. [Sh2]
    Z. Shen, On projectively related Einstein metrics in Riemann-Finsler geometry, Math. Ann., 320(2001), 625–647.MathSciNetMATHCrossRefGoogle Scholar
  10. [Sh3]
    Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.Google Scholar
  11. [Sh4]
    Z. Shen, Lectures on Finsler Geometry, World Scientific Publishers, 2001.Google Scholar
  12. [ShYi]
    Z. Shen and G. C. Yildirim, A characterization of Randers metrics of scalar flag curvature, preprint, 2005.Google Scholar
  13. [Sz]
    Z. Szabó, Ein Finslerscher Raum ist gerade dann von skalarer Krümmung, wenn seine Weyl sche Projektivkrümmüng verschwindet, Acta Sci. Math., (Szeged) 39(1977), 163–168.MathSciNetMATHGoogle Scholar

Copyright information

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xinyue Cheng
    • 1
  • Zhongmin Shen
    • 2
  1. 1.School of Mathematics and StatisticsChongqing University of TechnologyLijiatuo, ChongqingChina
  2. 2.Department of Mathematical SciencesIndiana University-Purdue University Indianapolis (IUPUI)IndianapolisUSA

Personalised recommendations