Compressive Rendering of Multidimensional Scenes

  • Pradeep Sen
  • Soheil Darabi
  • Lei Xiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7082)


Recently, we proposed the idea of using compressed sensing to reconstruct the 2D images produced by a rendering system, a process we called compressive rendering. In this work, we present the natural extension of this idea to multidimensional scene signals as evaluated by a Monte Carlo rendering system. Basically, we think of a distributed ray tracing system as taking point samples of a multidimensional scene function that is sparse in a transform domain. We measure a relatively small set of point samples and then use compressed sensing algorithms to reconstruct the original multidimensional signal by looking for sparsity in a transform domain. Once we reconstruct an approximation to the original scene signal, we can integrate it down to a final 2D image which is output by the rendering system. This general form of compressive rendering allows us to produce effects such as depth-of-field, motion blur, and area light sources, and also renders animated sequences efficiently.


Mean Square Error Computer Graphic Fourier Domain Motion Blur Compress Sense Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Veach, E.: Robust monte carlo methods for light transport simulation. PhD thesis, Stanford University, Stanford, CA, USA (1998); Adviser-Leonidas J. GuibasGoogle Scholar
  2. 2.
    Dutré, P., Bala, K., Bekaert, P., Shirley, P.: Advanced Global Illumination. AK Peters Ltd.,Wellesley (2006)Google Scholar
  3. 3.
    Jensen, H.W.: Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sen, P., Darabi, S.: Compressive rendering: A rendering application of compressed sensing. IEEE Transactions on Visualization and Computer Graphics 17, 487–499 (2011)CrossRefGoogle Scholar
  5. 5.
    Sen, P., Darabi, S.: Compressive estimation for signal integration in rendering. In: Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering (EGSR) 2010), vol. 29, pp. 1355–1363 (2010)Google Scholar
  6. 6.
    Sen, P., Darabi, S.: Exploiting the sparsity of video sequences to efficiently capture them. In: Magnor, M., Cremers, D., Zelnik-Manor, L. (eds.) Dagstuhl Seminar on Computational Video (2010)Google Scholar
  7. 7.
    Sen, P., Darabi, S.: Details and implementation for compressive estimation for signal integration in rendering. Technical Report EECE-TR-10-0003, University of New Mexico (2010)Google Scholar
  8. 8.
    Schröder, P.: Wavelets in computer graphics. Proceedings of the IEEE 84, 615–625 (1996)CrossRefGoogle Scholar
  9. 9.
    Schröder, P., Sweldens, W.: Wavelets in computer graphics. In: SIGGRAPH 1996 Course Notes (1996)Google Scholar
  10. 10.
    Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications. Morgan Kaufmann Publishers Inc., San Francisco (1996)Google Scholar
  11. 11.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, London (1999)zbMATHGoogle Scholar
  12. 12.
    Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. SIGGRAPH Comput. Graph 25, 197–206 (1991)CrossRefGoogle Scholar
  13. 13.
    Gortler, S.J., Schröder, P., Cohen, M.F., Hanrahan, P.: Wavelet radiosity. In: SIGGRAPH 1993, pp. 221–230 (1993)Google Scholar
  14. 14.
    Lischinski, D., Tampieri, F., Greenberg, D.P.: Combining hierarchical radiosity and discontinuity meshing. In: SIGGRAPH, pp. 199–208 (1993)Google Scholar
  15. 15.
    Schröder, P., Gortler, S.J., Cohen, M.F., Hanrahan, P.: Wavelet projections for radiosity. Computer Graphics Forum 13 (1994)Google Scholar
  16. 16.
    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH (2001)Google Scholar
  17. 17.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH, pp. 527–536 (2002)Google Scholar
  18. 18.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph 22, 376–381 (2003)CrossRefGoogle Scholar
  19. 19.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. In: SIGGRAPH, pp. 477–487 (2004)Google Scholar
  20. 20.
    Malzbender, T.: Fourier volume rendering. ACM Trans. Graph 12, 233–250 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Totsuka, T., Levoy, M.: Frequency domain volume rendering. In: SIGGRAPH, pp. 271–278 (1993)Google Scholar
  22. 22.
    Gross, M.H., Lippert, L., Dittrich, R., Häring, S.: Two methods for wavelet-based volume rendering. Computers and Graphics 21, 237–252 (1997)CrossRefGoogle Scholar
  23. 23.
    Bolin, M., Meyer, G.: A frequency based ray tracer. In: SIGGRAPH 1995: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–418 (1995)Google Scholar
  24. 24.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  25. 25.
    Whitted, T.: An improved illumination model for shaded display. Communications of the ACM 23, 343–349 (1980)CrossRefGoogle Scholar
  26. 26.
    Mitchell, D.P.: Generating antialiased images at low sampling densities. In: SIGGRAPH, pp. 65–72 (1987)Google Scholar
  27. 27.
    Walter, B., Drettakis, G., Parker, S.: Interactive rendering using the render cache. In: Lischinski, D., Larson, G. (eds.) Proceedings of the 10th Eurographics Workshop on Rendering, vol. 10, pp. 235–246. Springer-Verlag/Wien, New York, NY (1999)Google Scholar
  28. 28.
    Tole, P., Pellacini, F., Walter, B., Greenberg, D.: Interactive global illumination in dynamic scenes. ACM Trans. Graph 21, 537–546 (2002)CrossRefGoogle Scholar
  29. 29.
    Pighin, F., Lischinski, D., Salesin, D.: Progressive previewing of ray-traced images using image plane disconinuity meshing. In: Proceedings of the Eurographics Workshop on Rendering 1997, pp. 115–125. Springer, London (1997)Google Scholar
  30. 30.
    Guo, B.: Progressive radiance evaluation using directional coherence maps. In: SIGGRAPH 1998: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 255–266. ACM, New York (1998)CrossRefGoogle Scholar
  31. 31.
    Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph 22, 631–640 (2003)CrossRefGoogle Scholar
  32. 32.
    Sen, P., Cammarano, M., Hanrahan, P.: Shadow silhouette maps. ACM Transactions on Graphics 22, 521–526 (2003)CrossRefGoogle Scholar
  33. 33.
    Sen, P.: Silhouette maps for improved texture magnification. In: HWWS 2004: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 65–73. ACM, New York (2004)CrossRefGoogle Scholar
  34. 34.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH 2000: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)Google Scholar
  35. 35.
    Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of ICIP, pp. 259–263 (1998)Google Scholar
  36. 36.
    Marvasti, F.: Nonuniform Sampling: Theory and Practice. Kluwer Academic Publishers, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Feichtinger, H., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Marvasti, F., Liu, C., Adams, G.: Analysis and recovery of multidimensional signals from irregular samples using nonlinear and iterative techniques. Signal Process 36, 13–30 (1994)CrossRefzbMATHGoogle Scholar
  39. 39.
    Gu, J., Nayar, S., Grinspun, E., Belhumeur, P., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 845–858. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Peers, P., Mahajan, D., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28, 1–18 (2009)CrossRefGoogle Scholar
  41. 41.
    Sen, P., Darabi, S.: Compressive Dual Photography. Computer Graphics Forum 28, 609–618 (2009)CrossRefGoogle Scholar
  42. 42.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52, 489–509 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Donoho, D.L.: Compressed sensing. IEEE Trans. on Information Theory 52, 1289–1306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rice University Compressive Sensing Resources website (2009),
  45. 45.
    Candès, E.J., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear programming. In: IEEE Symposium on Foundations of Computer Science, pp. 295–308 (2005)Google Scholar
  46. 46.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory 53, 4655–4666 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit (2007) (preprint)Google Scholar
  48. 48.
    Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57, 2479–2493 (2009)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. on Information Theory 52, 5406–5425 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engineers 37, 10–21 (1949)MathSciNetGoogle Scholar
  51. 51.
    Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47, 2845–2862 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2001)Google Scholar
  53. 53.
    LuxRender (2009),
  54. 54.
    Dunbar, D., Humphreys, G.: A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 503–508 (2006)CrossRefGoogle Scholar
  55. 55.
    Intel Math Kernel Library (2009),
  56. 56.
    Stanford Systems Optimization Laboratory software website (2009),
  57. 57.
    Tsaig, Y., Donoho, D.L.: Extensions of compressed sensing. Signal Process 86, 549–571 (2006)CrossRefzbMATHGoogle Scholar
  58. 58.
    Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image Compression Fundamentals, Standards and Practice. Springer, Heidelberg (2001)Google Scholar
  59. 59.
    Alper, E., Mavinkurve, S.: Image inpainting implementation (2002),
  60. 60.
    Painter, J., Sloan, K.: Antialiased ray tracing by adaptive progressive refinement. SIGGRAPH Comput. Graph. 23, 281–288 (1989)CrossRefGoogle Scholar
  61. 61.
    Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 137–145 (1984)CrossRefGoogle Scholar
  62. 62.
    Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K., Humphreys, G., Zwicker, M., Jensen, H.W.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 1–10 (2008)Google Scholar
  63. 63.
    Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. 28, 1–12 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pradeep Sen
    • 1
  • Soheil Darabi
    • 1
  • Lei Xiao
    • 1
  1. 1.Advanced Graphics LabUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations