Toward Pairing-Free Certificateless Authenticated Key Exchanges

  • Hu Xiong
  • Qianhong Wu
  • Zhong Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)


Certificateless authenticated key exchange (CL-AKE) protocols do not suffer from intricate certificate management or heavy trust reliance on a third party. Unfortunately, these advantages are partially counteracted in most CL-AKE protocols which require expensive pairing operations. This paper proposes a new CL-AKE protocol without requiring any pairing operation during the protocol execution, although a pairing map may be required to realize a Decisional Diffie-Hellman (DDH) oracle in the security proof. With implicit authentication, we illustrate modular proofs in a security model incorporating standard definitions of AKE protocols and certificateless cryptography. Analysis shows that our protocol is also efficient.


Random Oracle Security Proof Test Oracle Pairing Operation Reveal Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Riyami, S., Paterson, K.: Certificateless Public Key Cryptography. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bao, F., Deng, R., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. 1st ACM CCS, pp. 62–73 (1993)Google Scholar
  4. 4.
    Cao, X., Kou, W., Yu, Y., Sun, Y.: Identity-based authenticated key agreement protocols without bilinear pairings. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91.A(12), 3833–3836 (2009)CrossRefGoogle Scholar
  5. 5.
    Cao, X., Kou, W., Du, X.: A pairing-free identity-based authenticated key agreement protocol with minimal message exchanges. Information Sciences 180(15), 2895–2903 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Catalano, D., Fiore, D., Gennaro, R.: Certificateless onion routing. In: Proc. 16th ACM CCS, pp. 151–160 (2009)Google Scholar
  7. 7.
    Chen, L., Cheng, Z., Smart, N.: Identity-based key agreement protocols from pairings. International Journal of Information Security 6(4), 213–241 (2007)CrossRefGoogle Scholar
  8. 8.
    Cilardo, A., Coppolino, L., Mazzocca, N., Romano, L.: Elliptic curve cryptography engineering. Proceedings of the IEEE 94(2), 395–406 (2006)CrossRefGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dutta, R., Barua, R.: Overview of Key Agreement Protocols. Cryptology ePrint Archive, Report 2005/289 (2005),
  11. 11.
    Fiore, D., Gennaro, R.: Making the Diffie-Hellman Protocol Identity-Based. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Geng, M., Zhang, F.: Provably secure certificateless two-party authenticated key agreement protocol without pairing. In: IEEE CIS 2009, pp. 208–212 (2009)Google Scholar
  13. 13.
    Han, W.: Breaking a certificateless key agreement protocol withour bilinear pairing. Cryptology ePrint Archive, Report 11/249 (2011),
  14. 14.
    He, D., Chen, J., Hu, J.: A pairing-free certificateless authenticated key agreement protocol. International Journal of Communication Systems (2011), doi:10.1002/dac.1265Google Scholar
  15. 15.
    Hou, M., Xu, Q.: A two-party certificateless authenticated key agreement protocol without pairing. In: 2nd IEEE ICCSIT, pp. 412–416 (2009)Google Scholar
  16. 16.
    Kaliski Jr., B.S.: An unknown key-share attack on the MQV key agreement protocol. ACM Transactions on Information and System Security 4(3), 275–288 (2001)CrossRefGoogle Scholar
  17. 17.
    Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Luo, M., Wen, Y., Zhao, H.: An Enhanced Authentication and Key Agreement Mechanism for SIP Using Certificateless Public-key Cryptography. In: 9th ICYCS 2008, pp. 1577–1582 (2008)Google Scholar
  19. 19.
    Mandt, T.K., Tan, C.H.: Certificateless authenticated two-party key agreement protocols. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 37–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, USA (1997)zbMATHGoogle Scholar
  21. 21.
    Swanson, C., Jao, D.: A Study of Two-Party Certificateless Authenticated Key-Agreement Protocols. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 57–71. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Wang, F., Zhang, Y.: A new provably secure authentication and key agreement mechanism for SIP using certificateless public-key cryptography. Computer Communications 31(10), 2142–2149 (2008)CrossRefGoogle Scholar
  23. 23.
    Wang, S., Cao, Z., Wang, L.: Efficient certificateless authenticated key agreement protocol from pairings. Wuhan University Journal of Natural Sciences 11(5), 1278–1282 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yang, G., Tan, C.-H.: Strongly secure certificateless key exchange without pairing. In: 6th ACM ASIACCS, pp. 71–79 (2011)Google Scholar
  25. 25.
    Zhang, L., Zhang, F., Wu, Q., Domingo-Ferrer, J.: Simulatable certificateless two-party authenticated key agreement protocol. Information Sciences 180(6), 1020–1030 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hu Xiong
    • 1
  • Qianhong Wu
    • 2
    • 3
  • Zhong Chen
    • 1
  1. 1.Key Laboratory of Network and Software Security Assurance of the Ministry of Education, Institute of Software, School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina
  2. 2.Key Lab. of Aerospace Information Security and Trusted Computing Ministry of Education, School of ComputerWuhan UniversityChina
  3. 3.Department of Computer Engineering and MathematicsUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations