Advertisement

An Efficient Construction of Time-Selective Convertible Undeniable Signatures

  • Qiong Huang
  • Duncan S. Wong
  • Willy Susilo
  • Bo Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)

Abstract

A time-selective convertible undeniable signature scheme allows a signer to release a time-selective converter which converts undeniable signatures pertaining to or up to a specific time period to publicly verifiable ones but not those in any other time periods. The security of existing schemes relies on a strong and interactive assumption called xyz-DCAA in random oracle model or several relatively new hash function assumptions in the generic group model. For some of them, the converter size for each time period also grows linearly or logarithmically with the number of previous time periods. In this paper, we propose a new construction in which all the converters (i.e. time-selective, selective and universal) are of constant size. In particular, the time-selective converter for each time period is only one group element, no matter how many previous time periods there are already. The security of this new construction is proved in the random oracle model based on non-interactive and falsifiable assumptions.

Keywords

convertible undeniable signature anonymity time-selective conversion random oracle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    El Aimani, L., Vergnaud, D.: Gradually convertible undeniable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 478–496. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS, pp. 62–73. ACM, New York (1993)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boyar, J., Chaum, D., Damgård, I., Pederson, T.P.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Damgård, I., Pedersen, T.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Galbraith, S.D., Mao, W.: Invisibility and anonymity of undeniable and confirmer signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Gentry, C., Molnar, D., Ramzan, Z.: Efficient designated confirmer signatures without random oracles or general zero-knowledge proofs (extended abstract). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Huang, Q., Wong, D.S.: Short convertible undeniable signature in the standard model. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 257–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kurosawa, K., Takagi, T.: New approach for selectively convertible undeniable signature schemes. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 428–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures with short conversion receipts. Information Sciences 180(12), 2458–2475 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Michels, M., Petersen, H., Horster, P.: Breaking and repairing a convertible undeniable signature scheme. In: CCS, pp. 148–152. ACM, New York (1996)Google Scholar
  16. 16.
    Michels, M., Stadler, M.: Efficient convertible undeniable signature schemes. In: SAC 1997, pp. 231–244 (1997)Google Scholar
  17. 17.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Okamoto, T.: Designated confirmer signatures and public-key encryption are equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Phong, L.T., Kurosawa, K., Ogata, W.: New RSA-based (selectively) convertible undeniable signature schemes. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 116–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Phong, L.T., Kurosawa, K., Ogata, W.: Provably secure convertible undeniable signatures with unambiguity. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 291–308. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Huang, Q., Wong, D.S., Susilo, W.: A new construction of designated confirmer signature and its application to optimistic fair exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Schuldt, J.C.N., Matsuura, K.: An efficient convertible undeniable signature scheme with delegatable verification. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 276–293. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qiong Huang
    • 1
    • 2
  • Duncan S. Wong
    • 2
  • Willy Susilo
    • 3
  • Bo Yang
    • 1
  1. 1.South China Agricultural UniversityGuangzhouChina
  2. 2.City University of Hong KongHong Kong S.A.R., China
  3. 3.Centre for Computer and Information Security ResearchUniversity of WollongongAustralia

Personalised recommendations