Assessing Location Privacy in Mobile Communication Networks

  • Klaus Rechert
  • Konrad Meier
  • Benjamin Greschbach
  • Dennis Wehrle
  • Dirk von Suchodoletz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)


In this paper we analyze a class of location disclosure in which location information from individuals is generated in an automated way, i.e. is observed by a ubiquitous infrastructure. Since such information is valuable for both scientific research and commercial use, location information might be passed on to third parties. Users are usually aware neither of the extent of the information disclosure (e.g. by carrying a mobile phone), nor how the collected data is used and by whom.

In order to assess the expected privacy risk in terms of the possible extent of exposure, we propose an adversary model and a privacy metric that allow an evaluation of the possible privacy loss by using mobile communication infrastructure. Furthermore, a case study on the privacy effects of using GSM infrastructure was conducted with the goal of analyzing the side effects of using a mobile handset. Based on these results requirements for a privacy-aware mobile handheld device were derived.


Mobile Phone Mobile Station Receive Signal Strength Location Privacy Location Update 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  2. 2.
    Krumm, J.: Ubiquitous advertising: The killer application for the 21st century. IEEE Pervasive Computing 99 (2010)Google Scholar
  3. 3.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: MobiSys 2003: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 31–42. ACM, New York (2003)Google Scholar
  4. 4.
    Ma, C.Y., Yau, D.K., Yip, N.K., Rao, N.S.: Privacy vulnerability of published anonymous mobility traces. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, MobiCom 2010, pp. 185–196. ACM, New York (2010)Google Scholar
  5. 5.
    Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Golle, P., Partridge, K.: On the anonymity of home/Work location pairs. In: Tokuda, H., Beigl, M., Friday, A., Brush, A., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bayir, M., Demirbas, M., Eagle, N.: Discovering spatiotemporal mobility profiles of cellphone users. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, WoWMoM 2004, pp. 1–9 (2009)Google Scholar
  8. 8.
    Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Rowland, J., Varshavsky, A.: A tale of two cities. In: HotMobile 2010: Proceedings of the Eleventh Workshop on Mobile Computing Systems; Applications, pp. 19–24. ACM, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Girardin, F., Calabrese, F., Dal Fiorre, F., Biderman, A., Ratti, C., Blat, J.: Uncovering the presence and movements of tourists from user-generated content. In: Proceedings of International Forum on Tourism Statistics (2008)Google Scholar
  10. 10.
    Girardin, F., Vaccari, A., Gerber, A., Biderman, A., Ratti, C.: Towards estimating the presence of visitors from the aggragate mobile phone network activity they generate. In: Proceedings of International Conference on Computers in Urban Planning and Urban Management (2009)Google Scholar
  11. 11.
    Sohn, T., Varshavsky, A., LaMarca, A., Chen, M., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W., de Lara, E.: Mobility detection using everyday GSM traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    De Mulder, Y., Danezis, G., Batina, L., Preneel, B.: Identification via location-profiling in gsm networks. In: Proceedings of the 7th ACM Workshop on Privacy in the Electronic Society, WPES 2008, pp. 23–32. ACM, New York (2008)Google Scholar
  13. 13.
    Lee, C.H., Hwang, M.S., Yang, W.P.: Enhanced privacy and authentication for the global system for mobile communications. Wirel. Netw. 5, 231–243 (1999)CrossRefGoogle Scholar
  14. 14.
    Ardagna, C., Jajodia, S., Samarati, P., Stavrou, A.: Privacy preservation over untrusted mobile networks. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X. (eds.) Privacy in Location-Based Applications. LNCS, vol. 5599, pp. 84–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Achieving guaranteed anonymity in gps traces via uncertainty-aware path cloaking. IEEE Transactions on Mobile Computing 9, 1089–1107 (2010)CrossRefGoogle Scholar
  16. 16.
    Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.P.: A distortion-based metric for location privacy. In: WPES 2009: Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society, pp. 21–30. ACM, New York (2009)Google Scholar
  17. 17.
    Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Computing 2, 46–55 (2003)CrossRefGoogle Scholar
  18. 18.
    Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    3rd Generation Partnership Project (3GPP): TS 24.008 Technical Specification Group Core Network and Terminals; Mobile radio interface Layer 3 specification; Core network protocols; Stage 3 (Release 10) (2010)Google Scholar
  20. 20.
    3rd Generation Partnership Project (3GPP): TS 45.008 Technical Specification Group GSM/EDGE Radio Access Network; Radio subsystem link control (Release 9) (2010)Google Scholar
  21. 21.
    3rd Generation Partnership Project (3GPP): TS 43.059 Technical Specification Group GSM/EDGE Radio Access Network; Functional stage 2 description of Location Services (LCS) in GERAN (Release 9) (2009)Google Scholar
  22. 22.
    3rd Generation Partnership Project (3GPP): TS 25.305 Technical Specification Group Radio Access Network; Stage 2 functional specification of User Equipment (UE) positioning in UTRAN (Release 10) (2010)Google Scholar
  23. 23.
    Sun, G., Chen, J., Guo, W., Liu, K.: Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs. IEEE Signal Processing Magazine 22, 12–23 (2005)Google Scholar
  24. 24.
    Zimmermann, D., Baumann, J., Layh, A., Landstorfer, F., Hoppe, R., Wolfle, G.: Database correlation for positioning of mobile terminals in cellular networks using wave propagation models. In: IEEE 60th Vehicular Technology Conference, VTC 2004-Fall, vol. 7, pp. 4682–4686 (2004)Google Scholar
  25. 25.
    Haeb-Umbach, R., Peschke, S.: A novel similarity measure for positioning cellular phones by a comparison with a database of signal power levels, vol. 56, pp. 368–372 (2007)Google Scholar
  26. 26.
    Westin, A.F.: Privacy and Freedom, 1st edn. Atheneum, New York (1967)Google Scholar
  27. 27.
    Duckham, M., Kulik, L.: Location privacy and location-aware computing, pp. 35–51. CRC Press, Boca Raton (2006)Google Scholar
  28. 28.
    Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal Ubiquitous Comput. 7, 275–286 (2003)CrossRefGoogle Scholar
  30. 30.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22, 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Klaus Rechert
    • 1
  • Konrad Meier
    • 1
  • Benjamin Greschbach
    • 2
  • Dennis Wehrle
    • 1
  • Dirk von Suchodoletz
    • 1
  1. 1.Faculty of EngineeringAlbert-Ludwigs University Freiburg i. B.Germany
  2. 2.School of Computer Science and CommunicationKTH - Royal Institute of TechnologyStockholmSweden

Personalised recommendations