Advertisement

APPA: Aggregate Privacy-Preserving Authentication in Vehicular Ad Hoc Networks

  • Lei Zhang
  • Qianhong Wu
  • Bo Qin
  • Josep Domingo-Ferrer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)

Abstract

Most security- and privacy-preserving protocols in vehicular ad hoc networks (VANETs) heavily rely on time-consuming cryptographic operations which produce a huge volume of cryptographic data. These data are usually employed for many kinds of decisions, which poses the challenge of processing the received cryptographic data fast enough to avoid unaffordable reaction delay. To meet that challenge, we propose a vehicular authentication protocol referred to as APPA. It guarantees trustworthiness of vehicular communications and privacy of vehicles, and enables vehicles to react to vehicular reports containing cryptographic data within a very short delay. Moreover, using our protocol, the seemingly random cryptographic data can be securely and substantially compressed so that the storage space of a vehicle can be greatly saved. Finally, our protocol does not heavily rely on roadside units (RSUs) and it can work to some extent even if the VANET infrastructure is incomplete. These features distinguish our proposal from others and make it attractive in various secure VANET scenarios.

Keywords

Traffic Security VANETs Privacy Protocol Design Data Compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dedicated Short Range Communications (DRSC) home, http://www.leearmstrong.com/Dsrc/DSRCHomeset.htm
  2. 2.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Calandriello, G., Papadimitratos, P., Hubaux, J.-P., Lioy, A.: Efficient and robust pseudonymous authentication in vanet. In: ACM VANET 2007, pp. 19–28. ACM Press, New York (2007)Google Scholar
  4. 4.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Daza, V., Domingo-Ferrer, J., Sebé, F., Viejo, A.: Trustworthy privacy-preserving car-generated announcements in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology 58(4), 1876–1886 (2009)CrossRefGoogle Scholar
  6. 6.
    Kiltz, E., Pietrzak, K.: Leakage resilient elGamal encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation 62(206), 865–874 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gentry, C., Ramzan, Z.: Identity-Based Aggregate Signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Jiang, Y., Shi, M., Shen, X., Lin, C.: BAT: A robust signature scheme for vehicular networks using binary authentication trees. IEEE Transactions on Wireless Communications 8(4), 1974–1983 (2009)CrossRefGoogle Scholar
  11. 11.
    Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Lin, X., Sun, X., Ho, P., Shen, X.: GSIS: A secure and privacy preserving protocol for vehicular communications. IEEE Transactions on Vehicular Technology 56(6), 3442–3456 (2007)CrossRefGoogle Scholar
  13. 13.
    Lu, R., Lin, X., Zhu, H., Ho, P., Shen, X.: ECPP: Efficient conditional privacy preservation protocol for secure vehicular communications. In: IEEE INFOCOM 2008, pp. 1229–1237. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  14. 14.
    Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curves logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Papadimitratos, P., Gligor, V., Hubaux, J.: Securing vehicular communications - Assumptions, requirements, and principles. In: ESCAR 2006 (2006)Google Scholar
  16. 16.
    Picconi, F., Ravi, N., Gruteser, M., Iftode, L.: Probabilistic validation of aggregated data in vehicular ad hoc networks. In: ACM VANET 2006, pp. 76–85. ACM Press, New York (2006)Google Scholar
  17. 17.
    Raya, M., Hubaux, J.: The security of vehicular ad hoc networks. In: ACM SASN 2005, pp. 11–21. ACM Press, New York (2005)Google Scholar
  18. 18.
    Raya, M., Hubaux, J.: Securing vehicular ad hoc networks. Journal of Computer Security 15(1), 39–68 (2007)CrossRefGoogle Scholar
  19. 19.
    Satizábal, C., Martínez-Peláez, R., Forné, J., Rico-Novella, F.: Reducing the computational cost of certification path validation in mobile payment. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 280–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  21. 21.
    Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Wasef, A., Shen, X.: ASIC: Aggregate signatures and certificates verification scheme for vehicular networks, http://www.engine.lib.uwaterloo.ca
  23. 23.
    Wu, Q., Domingo-Ferrer, J., Gonzalez-Nicolas, U.: Balanced trustworthiness, safety, and privacy in vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology 59(2), 559–573 (2010)CrossRefGoogle Scholar
  24. 24.
    Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric group key agreement. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 153–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Zhang, C., Lu, R., Lin, X., Ho, P., Shen, X.: An efficient identity-based batch verification scheme for vehicular sensor networks. In: IEEE INFOCOM 2008, pp. 246–250. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  26. 26.
    Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-based authenticated asymmetric group key agreement protocol. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 510–519. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Wu, Q., Solanas, A., Domingo-Ferrer, J.: A scalable robust authentication protocol for secure vehicular communications. IEEE Transactions on Vehicular Technology 59(4), 1606–1617 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhu, H., Lin, X., Lu, R., Ho, P., Shen, X.: AEMA: An aggregated emergency message authentication scheme for enhancing the security of vehicular ad hoc networks. In: IEEE ICC 2008, pp. 1436–1440. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lei Zhang
    • 1
  • Qianhong Wu
    • 2
    • 3
  • Bo Qin
    • 2
    • 4
  • Josep Domingo-Ferrer
    • 2
  1. 1.Software Engineering InstituteEast China Normal UniversityShanghaiChina
  2. 2.UNESCO Chair in Data Privacy, Dept. of Comp. Eng. and MathsUniversitat Rovira i VirgiliTarragona, CataloniaSpain
  3. 3.Key Lab. of Aerospace Information Security and Trusted Computing Ministry of Education, School of ComputerWuhan UniversityChina
  4. 4.Dept. of Maths, School of ScienceXi’an University of TechnologyChina

Personalised recommendations