Advertisement

Attacking Traitor Tracing Schemes Using History Recording and Abrupt Decoders

  • Aggelos Kiayias
  • Serdar Pehlivanoglu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)

Abstract

In ACM-DRM 2001, Kiayias and Yung [19] introduced a classification of pirate decoders in the context of traitor tracing that put forth traceability against history recording and abrupt pirate decoders. History recording pirate decoders are able to maintain state during the traitor tracing process while abrupt decoders can terminate the tracing operation at will based on the value of a “React” predicate. Beyond this original work, subsequently a number of other works tackled the problem of designing traitor tracing schemes against such decoders but with very limited success.

In this work, we present a new attack that can be mounted by abrupt and resettable decoders. Our attack defeats the tracing algorithm that was presented in [19] (which would continue to hold only for deterministic pirate decoders). Thus we show that contrary to what is currently believed there do not exist any known tracing procedures against abrupt decoders for general plaintext distributions. We also describe an attack that can be mounted by history recording (and available) decoders.

Keywords

Traitor Tracing Abrupt Decoders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Franklin, M.: An Efficient Public-Key Traitor Tracing Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM Conference on Computer and Communications Security, pp. 501–510 (2008)Google Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Transactions on Information Theory 44(5), 1897–1905 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: ACM Conference on Computer and Communications Security 2006, pp. 211–220 (2006)Google Scholar
  6. 6.
    Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  8. 8.
    Chabanne, H., Hieu Phan, D., Pointcheval, D.: Public Traceability in Traitor Tracing Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed Computing (PODC 2003), Boston, Massachusetts, July 13-16 (2003)Google Scholar
  11. 11.
    Furukawa, J., Attrapadung, N.: Fully Collusion Resistant Black-Box Traitor Revocable Broadcast Encryption with Short Private Keys. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 496–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Fiat, A., Tassa, T.: Dynamic Traitor Tracing. Journal of Cryptology 4(3), 211–223 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gafni, E., Staddon, J., Lisa Yin, Y.: Efficient Methods for Integrating Traceability and Broadcast Encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 372–387. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Kurosawa, K., Desmedt, Y.G.: Optimum Traitor Tracing and Asymmetric Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Kiayias, A., Pehlivanoglu, S.: On the security of a public-key traitor tracing scheme with sublinear ciphertext size. In: Digital Rights Management Workshop 2009, pp. 1–10 (2009)Google Scholar
  17. 17.
    Kiayias, A., Pehlivanoglu, S.: Improving the Round Complexity of Traitor Tracing Schemes. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 273–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Lee, M., Ma, D., Seo, M.: Breaking Two k-Resilient Traitor Tracing Schemes with Sublinear Ciphertext Size. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 238–252. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Matsushita, T., Imai, H.: A Public-Key Black-Box Traitor Tracing Scheme with Sublinear Ciphertext Size Against Self-Defensive Pirates. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 260–275. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless Receivers, Electronic Colloquium on Computational Complexity (ECCC) 43 (2002)Google Scholar
  24. 24.
    Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Hieu Phan, D., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public Key Traitor Tracing with Full- Public-Traceability, pp. 264–275Google Scholar
  26. 26.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial Properties of Frameproof and Traceability Codes. IEEE Transactions on Information Theory 47(3), 1042–1049 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Safavi-Naini, R., Wang, Y.: Traitor Tracing for Shortened and Corrupted Fingerprints. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 81–100. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Serdar Pehlivanoglu
    • 2
  1. 1.Computer Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Computer Science and EngineeringZirve UniversityTurkey

Personalised recommendations