Lagrangian Relaxation Applied to Sparse Global Network Alignment

  • Mohammed El-Kebir
  • Jaap Heringa
  • Gunnar W. Klau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7036)


Data on molecular interactions is increasing at a tremendous pace, while the development of solid methods for analyzing this network data is lagging behind. This holds in particular for the field of comparative network analysis, where one wants to identify commonalities between biological networks. Since biological functionality primarily operates at the network level, there is a clear need for topology-aware comparison methods. In this paper we present a method for global network alignment that is fast and robust, and can flexibly deal with various scoring schemes taking both node-to-node correspondences as well as network topologies into account. It is based on an integer linear programming formulation, generalizing the well-studied quadratic assignment problem. We obtain strong upper and lower bounds for the problem by improving a Lagrangian relaxation approach and introduce the software tool natalie 2.0, a publicly available implementation of our method. In an extensive computational study on protein interaction networks for six different species, we find that our new method outperforms alternative state-of-the-art methods with respect to quality and running time. An extended version of this paper including proofs and pseudo code is available at .


Integer Linear Programming Protein Protein Interaction Network Quadratic Assignment Problem Optimal Alignment Integer Linear Programming Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W.P., Johnson, T.: Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1994)Google Scholar
  2. 2.
    Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)CrossRefGoogle Scholar
  3. 3.
    Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25 (2000)Google Scholar
  4. 4.
    Ay, F., Kellis, M., Kahveci, T.: SubMAP: Aligning Metabolic Pathways with Subnetwork Mappings.. J. Comput. Biol. 18(3), 219–235 (2011)CrossRefGoogle Scholar
  5. 5.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set cover problem. Oper. Res. 47, 730–743 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Edmonds, J.: Path, trees, and flowers. Canadian J. Math. 17, 449–467 (1965)CrossRefMATHGoogle Scholar
  7. 7.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J.ACM 19, 248–264 (1972)CrossRefMATHGoogle Scholar
  8. 8.
    Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks.. Genome Res. 16(9), 1169–1181 (2006)CrossRefGoogle Scholar
  9. 9.
    Guignard, M.: Lagrangean relaxation. Top 11, 151–200 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program 1, 6–25 (1971)CrossRefMATHGoogle Scholar
  11. 11.
    Jaeger, S., Sers, C., Leser, U.: Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction. BMC Genomics 11(1), 717 (2010)CrossRefGoogle Scholar
  12. 12.
    Kanehisa, M., Goto, S., Hattori, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, 354–357 (2006)CrossRefGoogle Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  14. 14.
    Kelley, B.P., Sharan, R., Karp, R.M., et al.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. P. Natl. Acad. Sci. USA 100(20), 11394–11399 (2003)CrossRefGoogle Scholar
  15. 15.
    Klau, G.W.: A new graph-based method for pairwise global network alignment.. BMC Bioinform. 10(suppl.1), S59 (2009)CrossRefGoogle Scholar
  16. 16.
    Koyutürk, M., Kim, Y., Topkara, U., et al.: Pairwise alignment of protein interaction networks.. J. Comput. Biol. 13(2), 182–199 (2006)CrossRefGoogle Scholar
  17. 17.
    Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny.. J. R. Soc. Interface 7(50), 1341–1354 (2010)CrossRefGoogle Scholar
  18. 18.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q 2(1-2), 83–97 (1955)CrossRefMATHGoogle Scholar
  19. 19.
    Lawler, E.L.: The quadratic assignment problem. Manage. Sci. 9(4), 586–599 (1963)CrossRefMATHGoogle Scholar
  20. 20.
    Munkres, J.: Algorithms for the assignment and transportation problems. SIAM J. Appl. Math. 5, 32–38 (1957)CrossRefMATHGoogle Scholar
  21. 21.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison.. Nat. Biotechnol. 24(4), 427–433 (2006)CrossRefGoogle Scholar
  22. 22.
    Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12(6), 835–846 (2005)CrossRefGoogle Scholar
  23. 23.
    Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection.. P. Natl. Acad. Sci. USA 105(35), 12763–12768 (2008)CrossRefGoogle Scholar
  24. 24.
    Szklarczyk, D., Franceschini, A., Kuhn, M., et al.: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, 561–568 (2010)CrossRefGoogle Scholar
  25. 25.
    Wohlers, I., Andonov, R., Klau, G.W.: Algorithm engineering for optimal alignment of protein structure distance matrices. Optim. Lett. (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohammed El-Kebir
    • 1
    • 2
    • 3
  • Jaap Heringa
    • 2
    • 3
    • 4
  • Gunnar W. Klau
    • 1
    • 3
  1. 1.Life Sciences GroupCentrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Centre for Integrative Bioinformatics VU (IBIVU)VU University AmsterdamAmsterdamThe Netherlands
  3. 3.Netherlands Institute for Systems BiologyAmsterdamThe Netherlands
  4. 4.Netherlands Bioinformatics CentreThe Netherlands

Personalised recommendations