Business Process Model Similarity as a Proxy for Group Consensus

  • Peter Rittgen
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 92)


Consensus is an important measure for the success of any business process modeling effort. Although intensively studied in the general literature on group processes, consensus has hardly been considered in business process modeling and never seriously measured. We define consensus as the level of agreement of group members’ views on the process and introduce business process similarity as a proxy. We validate the measure by comparing it to an existing self-reported measure of consensus.


Business process modeling model similarity group consensus mental model view visualization 


  1. 1.
    Dennis, A.R., Carte, T.A., Kelly, G.G.: Breaking the rules: success and failure in groupware-supported business process reengineering. Decision Support Systems 36, 31–47 (2003)CrossRefGoogle Scholar
  2. 2.
    Lu, R., Sadiq, S.: A Survey of Comparative Business Process Modeling Approaches. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 82–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Rosemann, M.: Potential pitfalls of process modeling: part A. Business Process Management Journal 12, 249–254 (2006)CrossRefGoogle Scholar
  4. 4.
    Sedera, W., Gable, G.G., Rosemann, M., Smyth, R.W.: A success model for business process modeling: findings from a multiple case study. In: Eighth Pacific Asia Conference on Information Systems. Association for Information System (2004)Google Scholar
  5. 5.
    Luo, W., Tung, Y.A.: A framework for selecting business process modeling methods. Industrial Management & Data Systems 99, 312–319 (1999)CrossRefGoogle Scholar
  6. 6.
    Recker, J.C., Rosemann, M., Indulska, M., Green, P.: Business process modeling: a comparative analysis. Journal of the Association for Information Systems 10, 333–363 (2009)Google Scholar
  7. 7.
    Dean, D.L., Orwig, R.E., Lee, J.D., Vogel, D.R.: Modeling with a group modeling tool: Group support, model quality, and validation. In: Proceedings of the 27th Hawaii International Conference on System Sciences, Information systems: Collaboration technology, organizational systems and technology, vol. 4, pp. 214–223. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  8. 8.
    Mendling, J., Recker, J.: Extending the Discussion of Model Quality: Why Clarity and Completeness may not always be enough. In: 19th International Conference on Advanced Information Systems Engineering (CAiSE 2007), pp. 109–121 (2007)Google Scholar
  9. 9.
    Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of information models: empirical analysis of a conceptual model quality framework. In: Dillon, L., Tichy, W. (eds.) Proceedings of the International Conference on Software Engineering, ICSE 2003, Portland, USA (2003)Google Scholar
  10. 10.
    Sánchez-González, L., García, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction of Business Process Model Quality Based on Structural Metrics. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 458–463. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    DeStephen, R., Hirokawa, R.Y.: Small Group Consensus. Small Group Research 19, 227–239 (1988)CrossRefGoogle Scholar
  12. 12.
    Priem, R.L.: Top management team group factors, consensus, and firm performance. Strategic Management Journal 11, 469–478 (1990)CrossRefGoogle Scholar
  13. 13.
    Yoo, Y., Alavi, M.: Media and Group Cohesion: Relative Influences on Social Presence, Task Participation, and Group Consensus. MIS Quarterly 25, 371–390 (2001)CrossRefGoogle Scholar
  14. 14.
    Clegg, B.T.: Building a Holarchy Using Business Process-Oriented Holonic (PrOH) Modeling. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37, 23–40 (2007)CrossRefGoogle Scholar
  15. 15.
    Decker, B., Rech, J., Althoff, K.-D., Klotz, A., Leopold, E., Voss, A.: eParticipative Process Learning–process-oriented experience management and conflict solving. Data & Knowledge Engineering 52, 5–31 (2005)CrossRefGoogle Scholar
  16. 16.
    Kumarapeli, P., De Lusignan, S., Ellis, T., Jones, B.: Using Unified Modelling Language (UML) as a process-modelling technique for clinical-research process improvement. Informatics for Health and Social Care 32, 51–64 (2007)CrossRefGoogle Scholar
  17. 17.
    Rittgen, P.: Quality and perceived usefulness of process models. In: Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, Sierre (2010)Google Scholar
  18. 18.
    Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard University Press, Cambridge (1983)Google Scholar
  19. 19.
    Johnson-Laird, P.N.: The Computer and the Mind. Harvard University Press, Cambridge (1988)Google Scholar
  20. 20.
    Waisel, L.B., Wallace, W.A., Willemain, T.R.: Visualizing modeling heuristics: an exploratory study. In: Proceedings of the 20th international conference on Information Systems. Association for Information Systems, Charlotte (1999)Google Scholar
  21. 21.
    Dijkman, R.: Diagnosing Differences between Business Process Models. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Dijkman, R., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning Business Process Models. In: 2009 IEEE International Enterprise Distributed Object Computing Conference (EDOC 2009), pp. 45–53 (2009)Google Scholar
  24. 24.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Information Systems 36, 498–516 (2010)CrossRefGoogle Scholar
  25. 25.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling, vol. 67, Australian Computer Society, Inc., Ballarat (2007)Google Scholar
  26. 26.
    van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Dennis, A.R., Aronson, J.E., Heninger, W.G., Walker II, E.D.: Structuring Time and Task in Electronic Brainstorming. MIS Quarterly 23, 95–108 (1999)CrossRefGoogle Scholar
  28. 28.
    Dennis, A.R., Hilmer, K.M., Taylor, N.J.: Information Exchange and Use in GSS and Verbal Group Decision-Making: Effects of Minority Influence. Journal of MIS 14, 61–88 (1997)Google Scholar
  29. 29.
    Dennis, A.R., Wixom, B.H.: Investigating the Moderators of the Group Support Systems Use with Meta-Analysis. Journal of MIS 18, 235–258 (2001)Google Scholar
  30. 30.
    Ocker, R., Fjermestad, J., Hiltz, S.R., Johnson, K.: Effects of Four Modes of Group Communication on Outcomes of Software Requirements Determination. Journal of Management Information Systems 15, 99–118 (1998)Google Scholar
  31. 31.
    Reinig, B.A.: Toward an Understanding of Satisfaction with the Process and Outcomes of Teamwork. Journal of Management Information Systems 19, 65–83 (2003)Google Scholar
  32. 32.
    Mennecke, B.E., Valacich, J.S.: Information Is What You Make of It: The Influence of Group History and Computer Support on Information Sharing, Decision Quality, and Member Perceptions. Journal of MIS 15, 173–197 (1998)Google Scholar
  33. 33.
    Green, S.G., Taber, T.D.: The effects of three social decision schemes on decision group process. Organizational Behavior and Human Performance 25, 97–106 (1980)CrossRefGoogle Scholar
  34. 34.
    Rittgen, P.: Negotiating Models. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 561–573. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Dean, D.L., Orwig, R.E., Vogel, D.R.: Facilitation Methods for Collaborative Modeling Tools. Group Decision and Negotiation 9, 109–127 (2000)CrossRefGoogle Scholar
  36. 36.
    Gjersvik, R., Krogstie, J., Følstad, A.: Participatory Development of Enterprise Process Models. In: Krogstie, J., Halpin, T.A., Siau, K. (eds.) Information Modeling Methods and Methodologies, pp. 195–215. IGI Global, Hershey (2005)Google Scholar
  37. 37.
    Rittgen, P.: Collaborative Modeling - Roles, Activities and Team Organization. International Journal of Information System Modeling and Design 1, 1–19 (2010)CrossRefGoogle Scholar
  38. 38.
    Ssebuggwawo, D., Hoppenbrouwers, S., Proper, E.: Assessing Collaborative Modeling Quality Based on Modeling Artifacts. In: van Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper, E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Gronau, N., Müller, C., Uslar, M.: The KMDL Knowledge Management Approach: Integrating Knowledge Conversions and Business Process Modeling. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS (LNAI), vol. 3336, pp. 1–10. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Peter Rittgen
    • 1
    • 2
  1. 1.Vlerick Leuven Gent Management SchoolReep1GentBelgium
  2. 2.University of BoråsBoråsSweden

Personalised recommendations