Stochastic Selfish Routing

  • Evdokia Nikolova
  • Nicolas E. Stier-Moses
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6982)


We embark on an agenda to investigate how stochastic delays and risk aversion transform traditional models of routing games and the corresponding equilibrium concepts. Moving from deterministic to stochastic delays with risk-averse players introduces nonconvexities that make the network game more difficult to analyze even if one assumes that the variability of delays is exogenous. (For example, even computing players’ best responses has an unknown complexity [24].) This paper focuses on equilibrium existence and characterization in the different settings of atomic vs. nonatomic players and exogenous vs. endogenous factors causing the variability of edge delays. We also show that succinct representations of equilibria always exist even though the game is non-additive, i.e., the cost along a path is not a sum of costs over edges of the path as is typically assumed in selfish routing problems. Finally, we investigate the inefficiencies resulting from the stochastic nature of delays. We prove that under exogenous stochastic delays, the price of anarchy is exactly the same as in the corresponding game with deterministic delays. This implies that the stochastic delays and players’ risk aversion do not further degrade a system in the worst-case more than the selfishness of players.


Non-additive nonatomic congestion game stochastic Nash equilibrium stochastic Wardrop equilibrium risk aversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., Wynter, L.: A survey on networking games in telecommunications. Computers and Operations Research 33(2), 286–311 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andreatta, G., Romeo, L.: Stochastic shortest paths with recourse. Networks 18, 193–204 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ashlagi, I., Monderer, D., Tennenholtz, M.: Resource selection games with unknown number of players. In: Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Hakodate, Japan, pp. 819–825. ACM Press, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)Google Scholar
  5. 5.
    Bell, M.G.H., Cassir, C.: Risk-averse user equilibrium traffic assignment: an application of game theory. Transportation Research 36B(8), 671–681 (2002)CrossRefGoogle Scholar
  6. 6.
    Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Mathematics of Operations Research 16(3), 580–595 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Mathematics of Operations Research 29(4), 961–976 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in nonatomic congestion games. Games and Economic Behavior 64, 457–469 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Correa, J.R., Stier-Moses, N.E.: Wardrop equilibria. In: Cochran, J.J. (ed.) Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2011)Google Scholar
  10. 10.
    Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. Journal of Research of the U.S. National Bureau of Standards 73B, 91–118 (1969)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dial, R.B.: A probabilistic multi-path traffic assignment algorithm which obviates path enumeration. Transportation Research 5(2), 83–111 (1971)CrossRefGoogle Scholar
  12. 12.
    Fan, Y.Y., Kalaba, R.E., Moore, J.E.: Arriving on time. Journal of Optimization Theory and Applications 127(3), 497–513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fan, Y.Y., Kalaba, R.E., Moore, J.E.: Shortest paths in stochastic networks with correlated link costs. Computers and Mathematics with Applications 49, 1549–1564 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Berlin (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Langer, G.: Traffic in the united states. ABC News, February 13 (2005)Google Scholar
  16. 16.
    Liu, H., Ban, X., Ran, B., Mirchandani, P.: An analytical dynamic traffic assignment model with stochastic network and travelers’ perceptions. Transportation Research Record 1783, 125–133 (2002)CrossRefGoogle Scholar
  17. 17.
    Lo, H.K., Tung, Y.-K.: Network with degradable links: capacity analysis and design. Transportation Research 37B(4), 345–363 (2003)CrossRefGoogle Scholar
  18. 18.
    Markowitz, H.M.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Basil Blackwell, Cambridge (1987)zbMATHGoogle Scholar
  19. 19.
    Mirchandani, P.B., Soroush, H.: Generalized traffic equilibrium with probabilistic travel times and perceptions. Transportation Science 21, 133–152 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nash, J.F.: Noncooperative games. Annals of Mathematics 54(2), 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nie, Y., Wu, X.: Shortest path problem considering on-time arrival probability. Transportation Research Part B 43, 597–613 (2009)CrossRefGoogle Scholar
  23. 23.
    Nikolova, E.: Strategic algorithms. PhD thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science (2009)Google Scholar
  24. 24.
    Nikolova, E.: Approximation algorithms for reliable stochastic combinatorial optimization. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 338–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Nikolova, E., Brand, M., Karger, D.R.: Optimal route planning under uncertainty. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) Proceedings of the International Conference on Automated Planning & Scheduling (ICAPS), Cumbria, England, pp. 131–141 (2006)Google Scholar
  26. 26.
    Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic shortest paths via quasi-convex maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 552–563. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Ordóñez, F., Stier-Moses, N.E.: Wardrop equilibria with risk-averse users. Transportation Science 44(1), 63–86 (2010)CrossRefGoogle Scholar
  29. 29.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), Hersonissos, Greece, pp. 749–753. ACM Press, New York (2001)CrossRefGoogle Scholar
  30. 30.
    Pigou, A.C.: The Economics of Welfare. Macmillan, London (1920)Google Scholar
  31. 31.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schrank, D., Lomax, T., Turner, S.: Annual urban mobility report (2010), Texas Transportation Institute,
  33. 33.
    Sheffi, Y.: Urban Transportation Networks. Prentice-Hall, Englewood Cliffs (1985)Google Scholar
  34. 34.
    Sheffi, Y., Powell, W.: An algorithm for the traffic assignment problem with random link costs. Networks 12, 191–207 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Trahan, M.: Probabilistic assignment: An algorithm. Transportation Science 8(4), 311–320 (1974)CrossRefGoogle Scholar
  36. 36.
    Ukkusuri, S.V., Waller, S.T.: Approximate Analytical Expressions for Transportation Network Performance under Demand Uncertainty. Transportation Letters: The International Journal of Transportation Research 2(2), 111–123 (2010)CrossRefGoogle Scholar
  37. 37.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Evdokia Nikolova
    • 1
  • Nicolas E. Stier-Moses
    • 2
  1. 1.MIT CSAILCambridgeUSA
  2. 2.Columbia Business SchoolNew YorkUSA

Personalised recommendations