Advertisement

Weakly-Acyclic (Internet) Routing Games

  • Roee Engelberg
  • Michael Schapira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6982)

Abstract

Weakly-acyclic games – a superclass of potential games – capture distributed environments where simple, globally-asynchronous interactions between strategic agents are guaranteed to converge to an equilibrium. We explore the class of routing games in [4, 12], which models important aspects of routing on the Internet. We show that, in interesting contexts, such routing games are weakly acyclic and, moreover, that pure Nash equilibria in such games can be found in a computationally efficient manner.

Keywords

Weakly-acyclic games routing games convergence to Nash equilibrium best-response dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babaioff, M., Kleinberg, R., Papadimitriou, C.H.: Congestion games with malicious players. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P. (eds.) ACM Conference on Electronic Commerce, pp. 103–112. ACM, New York (2007)Google Scholar
  2. 2.
    Eliaz, K.: Fault tolerant implementation. Review of Economic Studies 69, 589–610 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fabrikant, A., Jaggard, A.D., Schapira, M.: On the structure of weakly acyclic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) Algorithmic Game Theory. LNCS, vol. 6386, pp. 126–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Fabrikant, A., Papadimitriou, C.H.: The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In: Teng, S.-H. (ed.) SODA, pp. 844–853. SIAM, Philadelphia (2008)Google Scholar
  5. 5.
    Feigenbaum, J., Ramachandran, V., Schapira, M.: Incentive-compatible interdomain routing. In: Feigenbaum, J., Chuang, J.C.-I., Pennock, D.M. (eds.) ACM Conference on Electronic Commerce, pp. 130–139. ACM, New York (2006)Google Scholar
  6. 6.
    Gao, L., Griffin, T., Rexford, J.: Inherently safe backup routing with BGP. In: INFOCOM, vol. 1, pp. 547–556. IEEE, Los Alamitos (2001)Google Scholar
  7. 7.
    Gao, L., Rexford, J.: Stable internet routing without global coordination. IEEE/ACM Trans. Netw. 9(6), 681–692 (2001)CrossRefGoogle Scholar
  8. 8.
    Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: FOCS, pp. 142–151. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  9. 9.
    Goldberg, S., Halevi, S., Jaggard, A.D., Ramachandran, V., Wright, R.N.: Rationality and traffic attraction: Incentives for honest path announcements in BGP. In: Bahl, V., Wetherall, D., Savage, S., Stoica, I. (eds.) SIGCOMM, pp. 267–278. ACM, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Gradwohl, R.: Fault tolerance in distributed mechanism design. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 539–547. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Jaggard, A.D., Schapira, M., Wright, R.N.: Distributed computing with adaptive heuristics. In: ICS, pp. 417–443. Tsinghua University Press, Beijing (2011)Google Scholar
  12. 12.
    Levin, H., Schapira, M., Zohar, A.: Interdomain routing and games. In: Dwork, C. (ed.) STOC, pp. 57–66. ACM, New York (2008)Google Scholar
  13. 13.
    Marden, J.R., Young, H.P., Arslan, G., Shamma, J.S.: Payoff-based dynamics in multi-player weakly acyclic games. SIAM J. on Control and Optimization 48, 373–396 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13, 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In: ICS, pp. 155–165. Tsinghua University Press, Beijing (2011)Google Scholar
  17. 17.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roee Engelberg
    • 1
  • Michael Schapira
    • 2
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Department of Computer SciencePrinceton UniversityUSA

Personalised recommendations