Diffusion in Social Networks with Competing Products

  • Krzysztof R. Apt
  • Evangelos Markakis
Conference paper

DOI: 10.1007/978-3-642-24829-0_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6982)
Cite this paper as:
Apt K.R., Markakis E. (2011) Diffusion in Social Networks with Competing Products. In: Persiano G. (eds) Algorithmic Game Theory. SAGT 2011. Lecture Notes in Computer Science, vol 6982. Springer, Berlin, Heidelberg


We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize the graphs for which adoption of a product by the whole network is possible (respectively necessary) and the ones for which a unique outcome is guaranteed. These characterizations directly yield polynomial time algorithms that allow us to determine whether a given social network satisfies one of the above properties.

We also study algorithmic questions for networks without unique outcomes. We show that the problem of computing the minimum possible spread of a product is NP-hard to approximate with an approximation ratio better than Ω(n), in contrast to the maximum spread, which is efficiently computable. We then move on to questions regarding the behavior of a node with respect to adopting some (resp. a given) product. We show that the problem of determining whether a given node has to adopt some (resp. a given) product in all final networks is co-NP-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krzysztof R. Apt
    • 1
    • 2
  • Evangelos Markakis
    • 3
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.University of AmsterdamThe Netherlands
  3. 3.Dept. of InformaticsAthens University of Economics and BusinessAthensGreece

Personalised recommendations