Modularizing Ontologies



As large monolithic ontologies are difficult to handle and maintain, the activity of modularizing an ontology consists in identifying components (modules) of this ontology that can be considered separately while they are interlinked with other modules. The end benefit of modularizing an ontology can be, depending on the particular application or scenario, (a) to improve performance by enabling the distribution or targeted processing, (b) to facilitate the development and maintenance of the ontology by dividing it in loosely coupled, self-contained components or (c) to facilitate the reuse of parts of the ontology. In this chapter, we present a brief introduction to the field of ontology modularization. We detail the approach taken as a guideline to modularize existing ontologies and the tools available in order to carry out this activity.


Dependency Graph Graph Transformation Module Extraction SPARQL Query Ontology Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cuenca Grau B, Parsia B, Sirin E, Kalyanpur A (2005) Automatic partitioning of owl ontologies using E-connections. In: Description logics, DL2005, EdinburghGoogle Scholar
  2. d’Aquin M, Sabou M, Motta E (2006) Modularization: a key for the dynamic selection of relevant knowledge components. In: Workshop on modular ontologies, WoMO 2006, AthensGoogle Scholar
  3. d’Aquin M, Doran P, Motta E, Tamma V (2007a) Towards a parametric ontology modularization framework based on graph transformation. In: International workshop on modular ontologies, K-CAP 2007, WhistlerGoogle Scholar
  4. d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for knowledge selection: experiments and evaluations. In: Database and expert systems applications, 18th international conference, DEXA 2007. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  5. d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y, Caracciolo C, Buil Aranda C, Gomez, JM (2008) D1.1.3 NeOn formalisms for modularization: syntax, semantics, algebra. NeOn deliverable 1.1.3. NeOn projectGoogle Scholar
  6. d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2009) Criteria and evaluation for ontology modularization technique criteria and evaluation for ontology modularization technique. In: Stuckenschmidt H, Parent C, Spaccapietra S (eds) Modular ontologies: concepts, theories and techniques for knowledge modularization. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  7. Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology engineering perspective. In: Proceedings of the 2007 ACM CIKM international conference on information and knowledge management, LisbonGoogle Scholar
  8. Doran P, Palmisano I, Tamma V (2008) SOMET: algorithm and tool for SPARQL based ontology module extraction. In: International workshop on ontologies: reasoning and modularity (WORM-08), ESWC 2008, TenerifeGoogle Scholar
  9. Kaushik S, Farkas C, Wijesekera D, Ammann P (2006) An algebra for composing ontologies. In: Formal ontology in information systems, FOIS 2006, BaltimoreGoogle Scholar
  10. Lopez V, Motta E, Dzbor M, d’Aquin M, Peroni S, Guidi D (2009) Final version of the question answering system. Deliverable 8.6 of the OpenKnowledge projectGoogle Scholar
  11. MacCartney B, McIlraith S, Amir E, Uribe TE (2003) Practical partition-based theorem proving for large knowledge bases. In: Proceedings of the international joint conference on artificial intelligence, IJCAI 2003, AcapulcoGoogle Scholar
  12. Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model management. In: Proceedings of the SIGMOD 2003, San Diego, pp 193–204Google Scholar
  13. Melnik S, Bernstein PA, Halevy AY, Rahm E (2004) A semantics for model management operators. Microsoft technical reportGoogle Scholar
  14. Noy NF, Musen MA (2004) Specifying ontology views by traversal. In: Proceedings of the international semantic web conference, ISWC 2004, HiroshimaGoogle Scholar
  15. Parnas DL (1978) Designing software for ease of extension and contraction. In: Proceedings of the 3rd international conference on software engineeringGoogle Scholar
  16. Seidenberg J, Rector A (2006) Web ontology segmentation: analysis, classification and use. In: Proceedings of the world wide web conference, WWW 2006, EdinburghGoogle Scholar
  17. Stuckenschmidt H (2006) Toward multi-viewpoint reasoning with OWL ontologies. In: Proceedings of the European semantic web conference, ESWC 2006, BudvaGoogle Scholar
  18. Stuckenschmidt H, Klein M (2004) Structure-based partitioning of large concept hierarchies. In: International semantic web conference, ISWC 2004, HiroshimaGoogle Scholar
  19. Suárez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification, scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, España. Available at
  20. Suntisrivaraporn B, Guilin Q, Ji Q, Haase P (2008) A modularization-based approach to finding all justifications for OWL DL entailments. In: Asian semantic web conference, ASWC 2008, BangkokGoogle Scholar
  21. Wiederhold G (1994) An algebra for ontology composition. In: Monterey workshop on formal methods, MontereyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Knowledge Media Institute (KMi)The Open UniversityMilton KeynesUK

Personalised recommendations