Skip to main content

Human Activity Modeling as Brownian Motion on Shape Manifold

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

In this paper we propose a stochastic modeling of human activity on a shape manifold. From a video sequence, human activity is extracted as a sequence of shape. Such a sequence is considered as one realization of a random process on shape manifold. Then Different activities are modeled by manifold valued random processes with different distributions. To solve the problem of stochastic modeling on a manifold, we first regress a manifold values process to a Euclidean process. The resulted process then could be modeled by linear models such as a stationary incremental process and a piecewise stationary incremental process. The mapping from manifold to Euclidean space is known as a stochastic development. The idea is to parallelly transport the tangent along curve on manifold to a single tangent space. The advantage of such technique is the one to one correspondence between the process in Euclidean space and the one on manifold. The proposed algorithm is tested on database [5] and compared with the related work in [5]. The result demonstrate the high accuracy of our modeling in characterizing different activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Analysis and Machine Intelligence (2004)

    Google Scholar 

  2. Hsu, E.P.: Stochastic analysis on manifold. Graduate Studies in Mathematics, 38

    Google Scholar 

  3. Bishop, R.L., Crittenden, R.J.: Geometry of Manifold. Academic Press, New York (1964)

    MATH  Google Scholar 

  4. Kobayashi, S., Nomizu, k.: Foundations of differential geometry, vol. 1. John Wiley & Sons, West Sussex (1996)

    MATH  Google Scholar 

  5. Blank, M., Gorelick, L., Shechtman, E., Basri, M.I.R.: Action as Space-Time Shapes. In: IEEE ICCV (2005)

    Google Scholar 

  6. Priestley, M.B., Subba Rao, T.: A Test for Non stationarity of Time-Series. Journal of the Royal Statistical Society. Series B 31(1), 140–149 (1969)

    MATH  MathSciNet  Google Scholar 

  7. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach, Data Mining in Time Series Databases. World Scientific, Singapore (2004)

    Google Scholar 

  8. Aggarwal, J.K., Cai, Q.: Human Motion Analysis: A Reivew. Computer Vision and Image Understanding 73, 428–440 (1999)

    Article  Google Scholar 

  9. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18, 1473–1488 (2008)

    Article  Google Scholar 

  10. Elgammal, A.M., Lee, C.-S.: Inferring 3D body pose from silhouettes using activity manifold learning. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, vol. 2, pp. 681–688 (June 2004)

    Google Scholar 

  11. Veeraraghavan, A., Roy-Chowdhury, A.K., Chellappa, R.: Matching Shape Sequences in Video with Applications in Human Movement Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 27(12) (December 2005)

    Google Scholar 

  12. Veeraraghavan, A., Chowdhury, A.R., Chellappa, R.: Role of shape and kinematics in human movement analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  13. Kendall, D.: Shape Manifolds, Procrustean Metrics and Complex Projective Spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, P., Steen, R., Yezzi, A., Krim, H.: Joint brain parametric T1-Map segmentation and RF inhomogeneity calibration. International Journal of Biomedical Imaging (269525), 14 p. (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yi, S., Krim, H., Norris, L.K. (2012). Human Activity Modeling as Brownian Motion on Shape Manifold. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics