Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

  • Chaohui Wang
  • Michael M. Bronstein
  • Alexander M. Bronstein
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


Similarity and correspondence are two fundamental archetype problems in shape analysis, encountered in numerous application in computer vision and pattern recognition. Many methods for shape similarity and correspondence boil down to the minimum-distortion correspondence problem, in which two shapes are endowed with certain structure, and one attempts to find the matching with smallest structure distortion between them. Defining structures invariant to some class of shape transformations results in an invariant minimum-distortion correspondence or similarity. In this paper, we model shapes using local and global structures, formulate the invariant correspondence problem as binary graph labeling, and show how different choice of structure results in invariance under various classes of deformations.


Heat Kernel Geodesic Distance Shape Match Correspondence Problem Commute Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berg, A., Berg, T., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: Proc. CVPR, vol. 1 (2005)Google Scholar
  2. 2.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103, 1168–1172 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. Trans. Visualization and Computer Graphics 13, 902–913 (2007)CrossRefGoogle Scholar
  5. 5.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28, 1383–1392 (2009)CrossRefGoogle Scholar
  6. 6.
    Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)Google Scholar
  7. 7.
    Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for shape recognition. INRIA Technical Report 7161 (2009)Google Scholar
  8. 8.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and Description with Applications to Mesh Matching. In: Proc. CVPR (2009)Google Scholar
  9. 9.
    Thorstensen, N., Keriven, R.: Non-rigid Shape matching using Geometry and Photometry. In: Proc. CVPR (2009)Google Scholar
  10. 10.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. SGP, pp. 225–233 (2007)Google Scholar
  11. 11.
    Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: Proc. CVPR (2008)Google Scholar
  12. 12.
    Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Visual Computer 25, 667–675 (2009)CrossRefGoogle Scholar
  13. 13.
    Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In: Proc. 3DPVT (2010)Google Scholar
  14. 14.
    Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. TOG 28 (2009)Google Scholar
  15. 15.
    Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: Proc. CVPR (2010)Google Scholar
  16. 16.
    Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proc. Computer Vision and Pattern Recognition (CVPR), pp. 168–174 (2001)Google Scholar
  17. 17.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV, 1–21 (2010)Google Scholar
  18. 18.
    Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. Trans. PAMI 29, 1873–1890 (2007)CrossRefGoogle Scholar
  19. 19.
    Gromov, M.: Structures Métriques Pour les Variétés Riemanniennes. Textes Mathématiques (1) (1981)Google Scholar
  20. 20.
    Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)Google Scholar
  22. 22.
    Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: Message-passing revisited. In: Proc. ICCV (2007)Google Scholar
  23. 23.
    Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Computer Graphics Forum 27, 1431–1439 (2008)CrossRefGoogle Scholar
  24. 24.
    Raviv, D., Bronstein, A., Bronstein, M., Kimmel, R.: Symmetries of non-rigid shapes. In: Proc. NRTL (2007)Google Scholar
  25. 25.
    Memoli, F. On the use of gromov-hausdorff distances for shape comparisonGoogle Scholar
  26. 26.
    Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27, 1341–1348 (2008)CrossRefGoogle Scholar
  27. 27.
    Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102, 7426–7431 (2005)CrossRefGoogle Scholar
  28. 28.
    Grinstead, C.M., Snell, L.J.: Introduction to Probability. AMS (1998)Google Scholar
  29. 29.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. Trans. PAMI 18, 377–388 (1996)CrossRefGoogle Scholar
  30. 30.
    Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  32. 32.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. SMI, pp. 167–178 (2004)Google Scholar
  33. 33.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. PNAS 95, 8431–8435 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and Mathematics III, 35–57 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chaohui Wang
    • 1
    • 2
  • Michael M. Bronstein
    • 3
  • Alexander M. Bronstein
    • 4
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire MASEcole Centrale de ParisChâtenay-MalabryFrance
  2. 2.Equipe GALENINRIA Saclay - Île de FranceOrsayFrance
  3. 3.Institute of Computational Science, Faculty of InformaticsUniversità della Svizzera ItalianaLuganoSwitzerland
  4. 4.Department of Electrical EngineeringTel Aviv UniversityIsrael

Personalised recommendations