Skip to main content

Should We Search for a Global Minimizer of Least Squares Regularized with an ℓ0 Penalty to Get the Exact Solution of an under Determined Linear System?

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

  • 2600 Accesses

Abstract

We study objectives \({\mathcal{F}}_d\) combining a quadratic data-fidelity and an ℓ0 regularization. Data d are generated using a full-rank M ×N matrix A with N > M. Our main results are listed below.

Minimizers of \({\mathcal{F}}_d\) are strict if and only if length(support())\(\leqslant M\) and the submatrix of A whose columns are indexed by support() is full rank. Their continuity in data is derived. Global minimizers are always strict.

We adopt a weak assumption on A and show that it holds with probability one. Data read \(d=A{\ddot{u}}\) where length(support(\({\ddot{u}}\)))\(\leqslant M-1\) and the submatrix whose columns are indexed by support(\({\ddot{u}}\)) is full rank. Among all strict (local) minimizers of \({\mathcal{F}}_d\) with support shorter than M − 1, the exact solution is the unique vector that cancels the residual. The claim is independent of the regularization parameter. This is usually a strict local minimizer where \({\mathcal{F}}_d\) does not reach its global minimum. Global minimization of \({\mathcal{F}}_d\) can then prevent the recovery of \({\ddot{u}}\).

A numerical example (A is 5 ×10) illustrates our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J.E.: On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society B 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Besag, J.E.: Digital image processing: Towards Bayesian image analysis. Journal of Applied Statistics 16(3), 395–407 (1989)

    Article  Google Scholar 

  3. Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. The Journal of Fourier Analysis and Applications 14(5) (2008)

    Google Scholar 

  4. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive Approximation 13(1), 57–98 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demoment, G.: Image reconstruction and restoration: Overview of common estimation structure and problems. IEEE Transactions on Acoustics Speech and Signal Processing ASSP-37, 2024–2036 (1989)

    Article  Google Scholar 

  7. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with a certain family of non-convex penalties and DC programming. IEEE Transactions on Signal Processing 57(12), 4686–4698 (2009)

    Article  MathSciNet  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Haupt, J., Nowak, R.: Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory 52(9), 4036–4048 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leclerc, Y.G.: Constructing simple stable description for image partitioning. International Journal of Computer Vision 3, 73–102 (1989)

    Article  Google Scholar 

  12. Li, S.Z.: Markov Random Field Modeling in Computer Vision, 1st edn. Springer, New York (1995)

    Book  Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing (The sparse way), 3rd edn. Academic Press, London (2008)

    MATH  Google Scholar 

  14. Nikolova, M.: On the minimizers of least squares regularized with an ℓ0 norm, Technical report (2011)

    Google Scholar 

  15. Neumann, J., Schörr, C., Steidl, G.: Combined SVM-based Feature Selection and classification. Machine Learning 61, 129–150 (2005)

    Article  MATH  Google Scholar 

  16. Robini, M.C., Lachal, A., Magnin, I.E.: A stochastic continuation approach to piecewise constant reconstruction. IEEE Transactions on Image Processing 16(10), 2576–2589 (2007)

    Article  MathSciNet  Google Scholar 

  17. Robini, M.C., Magnin, I.E.: Optimization by stochastic continuation. SIAM Journal on Imaging Sciences 3(4), 1096–1121 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thiao, M., Dinh, T.P., Thi, A.L.: DC Programming Approach for a Class of Nonconvex Programs Involving l0 Norm. CCIS, pp. 348–357. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  19. Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems, Winston, Washington DC (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolova, M. (2012). Should We Search for a Global Minimizer of Least Squares Regularized with an ℓ0 Penalty to Get the Exact Solution of an under Determined Linear System?. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics