Advertisement

Curvature Minimization for Surface Reconstruction with Features

  • Juan Shi
  • Min Wan
  • Xue-Cheng Tai
  • Desheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)

Abstract

A new surface reconstruction method is proposed based on graph cuts and local swap. We novelly integrate a curvature based variational model and Delaunay based tetrahedral mesh framework. The minimization task is performed by graph cuts and local swap sequentially. The proposed method could reconstruct surfaces with important features such as sharp edges and corners. Various numerical examples indicate the robustness and effectiveness of the method.

Keywords

Surface Reconstruction Delaunay Triangulation Dual Graph Tetrahedral Mesh Curvature Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
  2. 2.
    Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry 22(4), 481–504 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)Google Scholar
  4. 4.
    Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 213–222. ACM, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. Mathematical Methods for Curves and Surfaces, 1–14 (2010)Google Scholar
  6. 6.
    Bae, E., Shi, J., Tai, X.-C.: Graph cuts for curvature based image denoising. IEEE Transactions on Image Processing, November 1 (2010) (preprint) doi:10.1109/TIP.2010.2090533Google Scholar
  7. 7.
    Boykov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of Ninth IEEE International Conference on Computer Vision (2003)Google Scholar
  8. 8.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1124–1137 (2004)Google Scholar
  9. 9.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Journal on Applied Mathematics, 564–592 (2002)Google Scholar
  12. 12.
    Cohen, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24(1) (1997)Google Scholar
  13. 13.
    Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: SM 2003: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 127–134 (2003)Google Scholar
  14. 14.
    Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces I. Grundlehren der mathematischen Wissenschaften, vol. 295 (1992)Google Scholar
  15. 15.
    Franchini, E., Morigi, S., Sgallari, F.: Implicit shape reconstruction of unorganized points using PDE-based deformable 3D manifolds. Numerical Mathematics: Theory, Methods and Applications (2010)Google Scholar
  16. 16.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78 (1992)Google Scholar
  17. 17.
    Hornung, A., Kobbelt, L.: Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2006)Google Scholar
  18. 18.
    Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: Geometry Processing 2006: Fourth Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, 2006, June 26-28, page 41, Eurographics (2006)Google Scholar
  19. 19.
    Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: CVPR, pp. 2993–3000 (2009)Google Scholar
  20. 20.
    Kolmogorov, V., Zabih, R., Gortler, S.: Generalized multi-camera scene reconstruction using graph cuts. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 501–516. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Lempitsky, V.S., Boykov, Y.: Global optimization for shape fitting. In: CVPR. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  22. 22.
    Leung, S., Zhao, H.: A grid based particle method for evolution of open curves and surfaces. Journal of Computational Physics 228(20), 7706–7728 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics 3(7), 34–57 (2002)zbMATHGoogle Scholar
  24. 24.
    Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and its Applications (1994)Google Scholar
  25. 25.
    Paris, S., Sillion, F.X., Quan, L.: A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision 66(2), 141–161 (2006)CrossRefGoogle Scholar
  26. 26.
    Solem, J.E., Kahl, F.: Surface reconstruction from the projection of points, curves and contours. In: 2nd Int. Symposium on 3D Data Processing, Visualization and Transmission, Thessaloniki, Greece (2004)Google Scholar
  27. 27.
    Solem, J.E., Kahl, F.: Surface reconstruction using learned shape models. Advances in Neural Information Processing Systems 17, 1 (2005)Google Scholar
  28. 28.
    Sormann, M., Zach, C., Bauer, J., Karner, K., Bishof, H.: Watertight multi-view reconstruction based on volumetric graph-cuts. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 393–402. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Tai, X.C., Hahn, J., Chung, G.J.: A Fast Algorithm For Euler’s Elastica Model Using Augmented Lagrangian Method. UCLA CAM Report 10-47 (2010)Google Scholar
  30. 30.
    Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Transactions on Graphics 22(3), 445–452 (2003)CrossRefGoogle Scholar
  31. 31.
    Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing: theory and applications. D.Reidel(1988)Google Scholar
  32. 32.
    Vogiatzis, G., Torr, P.H.S., Cipolla, R.: Multi-view stereo via volumetric graph-cuts. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2 (2005)Google Scholar
  33. 33.
    Wan, M., Wang, Y., Wang, D.: Variational surface reconstruction based on delaunay triangulation and graph cut. International Journal for Numerical Methods in Engineering 85, 206–229 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ye, J., Bresson, X., Goldstein, T., Osher, S.: A Fast Variational Method for Surface Reconstruction from Sets of Scattered Points. UCLA CAM Report (2010)Google Scholar
  35. 35.
    Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM 2001), p. 194. IEEE Computer Society Press, Washington, DC (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Shi
    • 1
  • Min Wan
    • 1
  • Xue-Cheng Tai
    • 1
    • 2
  • Desheng Wang
    • 1
  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations