Weakly Convex Coupling Continuous Cuts and Shape Priors

  • Bernhard Schmitzer
  • Christoph Schnörr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


We introduce a novel approach to variational image segmentation with shape priors. Key properties are convexity of the joint energy functional and weak coupling of convex models from different domains by mapping corresponding solutions to a common space. Specifically, we combine total variation based continuous cuts for image segmentation and convex relaxations of Markov Random Field based shape priors learned from shape databases. A convergent algorithm amenable to large-scale convex programming is presented. Numerical experiments demonstrate promising synergistic performance of convex continuous cuts and convex variational shape priors under image distortions related to noise, occlusions and clutter.


Image Segmentation Dependency Graph Convex Relaxation Convex Model Shape Prior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE’s. Journal of Convex Analysis 15(3), 485–506 (2008)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Patt. Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comp. Math. 5(1), 1–58 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Patt. Recognition 36(9), 1929–1943 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dambreville, S., Rathi, Y., Tannenbaum, A.: A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans. Patt. Anal. Mach. Intell. 30(8), 1385–1399 (2008)CrossRefGoogle Scholar
  8. 8.
    Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hoefling, H., Tibshirani, R.: Estimation of sparse binary pairwise markow networks using pseudo-likelihoods. Journal of Machine Learning Research 10, 883–906 (2009)zbMATHGoogle Scholar
  11. 11.
    Lecumberry, F., Pardo, A., Sapiro, G.: Simultaneous object classification and segmentation with high-order multiple shape models. IEEE Trans. Image Proc. 19(3), 625–635 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: ICCV (2009)Google Scholar
  13. 13.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: CVPR, pp. 810–817 (2009)Google Scholar
  15. 15.
    Sontag, D.A.: Approximate Inference in Graphical Models using LP Relaxations. Ph.D. thesis, Massachusetts Institute of Technology (2010)Google Scholar
  16. 16.
    Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM Journal on Imaging Sciences 4(1), 109–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1(1-2), 1–305 (2008)zbMATHGoogle Scholar
  18. 18.
    Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Rend. Lincei Mat. Appl. 9, 25–57 (2008)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bernhard Schmitzer
    • 1
  • Christoph Schnörr
    • 1
  1. 1.University of HeidelbergGermany

Personalised recommendations