Advertisement

A Hybrid Scheme for Contour Detection and Completion Based on Topological Gradient and Fast Marching Algorithms - Application to Inpainting and Segmentation

  • Y. Ahipo
  • D. Auroux
  • L. D. Cohen
  • M. Masmoudi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)

Abstract

We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient, and identifies the main edges of an image. Several image processing problems (e.g. inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm, in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm.

Keywords

topological gradient fast marching contour completion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardon, R., Cohen, L.D., Yezzi, A.: A new implicit method for surface segmentation by minimal paths in 3D images. Applied Mathematics and Optimization 55(2), 127–144 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Auroux, D., Masmoudi, M.: Image processing by topological asymptotic expansion. J. Math. Imaging Vision 33(2), 122–134 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chan, T., Shen, J.: Non-texture inpainting by curvature-driven diffusions (CDD). Tech. Rep. 00-35, UCLA CAM (September 2000)Google Scholar
  4. 4.
    Cohen, L.D.: Minimal paths and fast marching methods for image analysis. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models in Computer Vision: the Handbook. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cohen, L.D.: Multiple contour finding and perceptual grouping using minimal paths. J. Math. Imaging Vision 14(3), 225–236 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dicker, J.: Fast marching methods and level set methods: an implementation. Ph.D. thesis, University of British Columbia (2006)Google Scholar
  7. 7.
    Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). J. Appl. Comput. Harmonic Anal. 19, 340–358 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jaafar-Belaid, L., Jaoua, M., Masmoudi, M., Siala, L.: Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci., Ser. I 342(5), 313–318 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Masmoudi, M.: The topological asymptotic, Computational Methods for Control Applications. In: Glowinski, R., Karawada, H., Périaux, J. (eds.) GAKUTO Internat. Ser. Math. Sci. Appl., Tokyo, Japan, vol. 16, pp. 53–72 (2001)Google Scholar
  10. 10.
    Rawlinson, N., Sambridge, M.: The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor. Geophys. 36, 341–350 (2005)CrossRefGoogle Scholar
  11. 11.
    Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  12. 12.
    Telea, A., van Wijk, J.: An augmented fast marching method for computing skeletons and centerlines. In: Proc. Eurographics IEEE-TCVG Symposium on Visualization. Springer, Vienna (2002)Google Scholar
  13. 13.
    Wen, P., Wu, X., Wu, C.: An interactive image inpainting method based on rbf networks. In: 3rd Int. Symposium on Neural Networks, pp. 629–637 (2006)Google Scholar
  14. 14.
    Zhou, T., Tang, F., Wang, J., Wang, Z., Peng, Q.: Digital image inpainting with radial basis functions. J. Image Graphics 9(10), 1190–1196 (2004) (in Chinese)Google Scholar
  15. 15.
    Zhu, F., Tian, J.: Modified fast marching methods and level set method for medical image segmentation. J. X-ray Sci. Tech. 11(4), 193–204 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Y. Ahipo
    • 1
  • D. Auroux
    • 2
  • L. D. Cohen
    • 3
  • M. Masmoudi
    • 4
  1. 1.Spring TechnologiesToulouseFrance
  2. 2.Laboratoire J. A. DieudonnéUniversité de Nice Sophia AntipolisFrance
  3. 3.CEREMADE, UMR CNRS 7534, Université Paris DauphineFrance
  4. 4.Institut de Mathématiques de ToulouseFrance

Personalised recommendations