A Geodesic Voting Shape Prior to Constrain the Level Set Evolution for the Segmentation of Tubular Trees

  • Youssef Rouchdy
  • Laurent D. Cohen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


This paper presents a geodesic voting method to segment tree structures, such as retinal or cardiac blood vessels. Many authors have used minimal cost paths, or similarly geodesics relative to a weight potential P, to find a vessel between two end points. Our goal focuses on the use of a set of such geodesic paths for finding a tubular tree structures, using minimal interaction. This work adapts the geodesic voting method that we have introduced for the segmentation of thin tree structures to the segmentation of tubular trees. The original approach of geodesic voting consists in computing geodesics from a set of end points scattered in the image to a given source point. The target structure corresponds to image points with a high geodesic density. Since the potential takes low values on the tree structure, geodesics will locate preferably on this structure and thus the geodesic density should be high. Geodesic voting method gives a good approximation of the localization of the tree branches, but it does not allow to extract the tubular aspect of the tree. Here, we use the geodesic voting method to build a shape prior to constrain the level set evolution in order to segment the boundary of the tubular structure. We show results of the segmentation with this approach on 2D angiogram images and 3D simulated data.


Tree Structure Segmentation Result Active Contour Minimal Path Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)CrossRefGoogle Scholar
  2. 2.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Medical Image Analysis 9(3), 209–221 (2005)CrossRefGoogle Scholar
  3. 3.
    Li, H., Yezzi, A.: Vessels as 4D curves: Global minimal 4D paths to extract 3D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26, 1213–1223 (2007)CrossRefGoogle Scholar
  4. 4.
    Li, H., Yezzi, A., Cohen, L.: 3D multi-branch tubular surface and centerline extraction with 4D iterative key points. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI (1) 2009. LNCS, vol. 5762, pp. 1042–1050. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)CrossRefGoogle Scholar
  6. 6.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)CrossRefGoogle Scholar
  7. 7.
    Avants, B.B., Williams, J.P.: An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 707–716. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Deschamps, T., Cohen, L.D.: Minimal paths in 3D images and application to virtual endoscopy. In: Vernon, D. (ed.) ECCV(2) 2000. LNCS, vol. 1843, pp. 543–557. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis 5(4), 281–299 (2001)CrossRefGoogle Scholar
  10. 10.
    Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI (1) 2008, Part I. LNCS, vol. 5241, pp. 602–611. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Wink, O., Niessen, W.J., Verdonck, B., Viergever, M.A.: Vessel axis determination using wave front propagation analysis. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 845–853. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Cohen, L.D., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Computer Methods in Biomechanics and Biomedical Engineering 10(4) (2007)Google Scholar
  13. 13.
    Rouchdy, Y., Cohen, L.D.: Image segmentation by geodesic voting. application to the extraction of tree structures from confocal microscope images. In: The 19th International Conference on Pattern Recognition, Tampa, Florida, pp. 1–5 (2008)Google Scholar
  14. 14.
    Rouchdy, Y., Cohen, L.D.: The shading zone problem in geodesic voting and its solutions for the segmentation of tree structures. application to the segmentation of microglia extensions. In: Computer Vision and Pattern Recognition Workshop MMBIA, Miami, Florida, pp. 66–71 (2009)Google Scholar
  15. 15.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24(1), 57–78 (1997)CrossRefGoogle Scholar
  16. 16.
    Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Med. Imaging 10(2), 266–277 (2001)zbMATHGoogle Scholar
  18. 18.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Leventon, M.E., Faugeras, O.D., Grimson, W.E.L., Wells III, W.E.: Level set based segmentation with intensity and curvature prior. In: MMBIA, pp. 4–11 (2000)Google Scholar
  20. 20.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision 72, 215 (2007)CrossRefGoogle Scholar
  21. 21.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  22. 22.
    Hameeteman, K., Freiman, M., Zuluaga, M.A., Joskowicz, L., Rozie, S., van Gils, M.J., van den Borne, L., Sosna, J., Berman, P., Cohen, N., Douek, P., Snchez, I., Aissat, M., van der Lugt, A., Krestin, G.P., Niessen, W.J., van Walsum, T.: Carotid lumen segmentation and stenosis grading challenge. In: MICCAI 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Youssef Rouchdy
    • 1
  • Laurent D. Cohen
    • 1
  1. 1.CEREMADE, UMR 7534, Université Paris DauphineParisFrance

Personalised recommendations