Advertisement

Bifurcation of Segment Edge Curves in Scale Space

  • Tomoya Sakai
  • Haruhiko Nishiguchi
  • Hayato Itoh
  • Atsushi Imiya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)

Abstract

In this paper, we aim to develop a criterion to select scale parameters, which control pre-smoothing for edge detection. We first formalise the Canny edge detector which extracts the zeros of bilinear form of the first- and the second-order derivatives of image intensity. Then, we show the bifurcation property of the edge curves at the singular points in the linear scale space. Finally using the scale space hierarchy of the singular point, we derive a criterion to select scale parameters for edge detection.

Keywords

Singular Point Scale Space Stable Point Canny Edge Canny Edge Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Krueger, W.M., Phillips, K.: The geometry of differential operator with application to image processing. PAMI 11, 1252–1264 (1989)CrossRefGoogle Scholar
  3. 3.
    Enomoto, H., Yonezaki, N., Watanabe, Y.: Application of structure lines to surface construction and 3-dimensional analysis. In: Fu, K.-S., Kunii, T.L. (eds.) Picture Engineering, pp. 106–137. Springer, Berlin (1982)CrossRefGoogle Scholar
  4. 4.
    Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Processing 38, 99–112 (1994)CrossRefGoogle Scholar
  5. 5.
    Iijima, T.: Pattern Recognition, Corona-sha, Tokyo (1974) (in Japanese)Google Scholar
  6. 6.
    Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1993)Google Scholar
  7. 7.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    ter Haar Romeny, B.M.: Front-End Vision and Multi-Scale Image Analysis Multi-scale Computer Vision Theory and Applications, written in Mathematica. Springer, Berlin (2003)CrossRefGoogle Scholar
  10. 10.
    Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IECE Japan, Trans. D. J68-D, 508–514 (1985) (in Japanese)Google Scholar
  11. 11.
    Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IECE Japan, Trans. D. J68-D, 1125–1135 (1985) (in Japanese)Google Scholar
  12. 12.
    Sakai, T., Imiya, A.: Scale-space hierarchy of singularities. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 181–192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115, 368–401 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Damon, J.: Generic properties of solutions to partial differential equations. Archive for Rational Mechanics and Analysis 140, 353–403 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Florack, L.M.J., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18, 169–189 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kuijper, A.: The Deep Structure of Gaussian Scale Space Images, PhD thesis, Utrecht University (2002)Google Scholar
  18. 18.
    Duits, R., Florack, L.M.J., Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing 13, 543–557 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomoya Sakai
    • 1
  • Haruhiko Nishiguchi
    • 2
  • Hayato Itoh
    • 3
  • Atsushi Imiya
    • 4
  1. 1.Department of Computer and Information SciencesNagasaki UniversityNagsakiJapan
  2. 2.School of Science and TechnologyChiba UniversityJapan
  3. 3.School of Advanced Integration SciencesChiba UniversityJapan
  4. 4.Institute of Media and Information TechnologyChiba UniversityChibaJapan

Personalised recommendations