Entropy-Scale Profiles for Texture Segmentation

  • Byung-Woo Hong
  • Kangyu Ni
  • Stefano Soatto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


We propose a variational approach to unsupervised texture segmentation that depends on very few parameters and is robust to imaging conditions. First, the uneven illumination in the observed image is removed by the proposed image decomposition model that approximates the illumination and well retains the textures and features in the image. Then, from the obtained intrinsic image, we introduce a new data, multiscale local entropy, which is the entropy of each location’s neighborhood histogram with various scales. The proposed segmentation model uses multiscale local entropy as data. Together with a length penalizing term, minimizing the energy functional locates the contours so that the local entropy within each region is similar to one another. Since entropy is the only feature, there are very few parameters. Moreover, the segmentation model can be solved by a fast global minimization method. Experimental results on natural images show the proposed method is able to robustly segment various texture patterns with uneven illumination in the original images.


Active Contour Texture Region Texture Pattern Texture Segmentation Local Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via gamma convergence. Comm. on Pure and Applied Math. 43, 999–1036 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jain, A.K., Farrakhonia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 23(12), 1167–1186 (1991)CrossRefGoogle Scholar
  5. 5.
    Chan, T., Sandberg, B., Vese, L.: Active contours without edges for textured images. UCLA Comput. Appl. Math. Rep. 02-39 (2002)Google Scholar
  6. 6.
    Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Integrated active contours for texture segmentation. IEEE Transactions on Image Processing 15(6), 1633–1646 (2006)CrossRefGoogle Scholar
  7. 7.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40(1)Google Scholar
  8. 8.
    Manjunath, B.S., Chellappa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(5), 478–482 (1991)CrossRefGoogle Scholar
  9. 9.
    Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)CrossRefGoogle Scholar
  10. 10.
    Yezzi, J.A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Int. Conf. on Computer Vision, pp. 898–903 (1999)Google Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46(3)Google Scholar
  12. 12.
    Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Computer Vision and Pattern RecognitionGoogle Scholar
  13. 13.
    Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Appl. Math. 1(2), 2128–2145 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Herbulot, A., Jehan-Besson, S., Duffner, S., Barlaud, M., Aubert, G.: Segmentation of vectorial image features using shape gradients and information measures. J. Math. Imaging and Vision 25(3), 365–386 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kim, J., Fisher, J.W., Yezzi, A., Cetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. on Image Processing 14, 1486–1502 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Awate, S.P., Tasdizen, T., Whitaker, R.T.: Unsupervised texture segmentation with nonparametric neighborhood statistics. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 494–507. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the bhattacharya gradient flow. IEEE Trans. on Image Processing 16(11), 2787–2801 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based segmentation using the wasserstein distance. International Journal of Computer Vision 84(1), 97–111 (2009)CrossRefGoogle Scholar
  19. 19.
    Li, C., Li, F., Kao, C.-Y., Xu, C.: IImage Segmentation with Simultaneous Illumination and Reflectance Estimation: An Energy Minimization Approach. In: Proc. of ICCV (2009)Google Scholar
  20. 20.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)Google Scholar
  21. 21.
    Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Total variation models for variable lighting face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(9), 1519–1524 (2006)CrossRefGoogle Scholar
  22. 22.
    Rudin, L., Lions, L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms, vol. 445. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Le, T.M., Vese, L.A.: Additive and Multiplicative piecewise-smooth segmentation models in a functional minimization approach. Contemporary Mathematics (2007)Google Scholar
  24. 24.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision 67(1), 111–136 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5), 1632–1648 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Byung-Woo Hong
    • 1
  • Kangyu Ni
    • 2
  • Stefano Soatto
    • 3
  1. 1.School of Computer Science and EngineeringChung-Ang UniversitySeoulKorea
  2. 2.School of Mathematical and Statistical SciencesArizona State UniversityUSA
  3. 3.Computer Science DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations