Anisotropic Non-Local Means with Spatially Adaptive Patch Shapes

  • Charles-Alban Deledalle
  • Vincent Duval
  • Joseph Salmon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


This paper is about extending the classical Non-Local Means (NLM) denoising algorithm using general shapes instead of square patches. The use of various shapes enables to adapt to the local geometry of the image while looking for pattern redundancies. A fast FFT-based algorithm is proposed to compute the NLM with arbitrary shapes. The local combination of the different shapes relies on Stein’s Unbiased Risk Estimate (SURE). To improve the robustness of this local aggregation, we perform an anistropic diffusion of the risk estimate using a properly modified Perona-Malik equation. Experimental results show that this algorithm improves the NLM performance and it removes some visual artifacts usually observed with the NLM.


Image denoising non-local means spatial adaptivity aggregation risk estimation SURE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  2. 2.
    Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123(3), 199–257 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Weickert, J.: Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  4. 4.
    Yaroslavsky, L.P.: Digital picture processing. Springer Series in Information Sciences, vol. 9. Springer, Berlin (1985)Google Scholar
  5. 5.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)Google Scholar
  6. 6.
    Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25(3), 929–947 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Polzehl, J., Spokoiny, V.G.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. Ser. B Stat. Methodol. 62(2), 335–354 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Katkovnik, V., Foi, A., Egiazarian, K.O., Astola, J.T.: Directional varying scale approximations for anisotropic signal processing. In: EUSIPCO, pp. 101–104 (2004)Google Scholar
  9. 9.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006)CrossRefGoogle Scholar
  11. 11.
    Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006)CrossRefGoogle Scholar
  12. 12.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV (2009)Google Scholar
  15. 15.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Salmon, J., Strozecki, Y.: From patches to pixels in non-local methods: Weighted-Average reprojection. In: ICIP (2010)Google Scholar
  17. 17.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: BM3D image denoising with shape-adaptive principal component analysis. In: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations, SPARS 2009 (2009)Google Scholar
  18. 18.
    Duval, V., Aujol, J.F., Gousseau, Y.: On the parameter choice for the non-local means. Technical Report hal-00468856, HAL (2010)Google Scholar
  19. 19.
    Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9(6), 1135–1151 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Van De Ville, D., Kocher, M.: SURE-based Non-Local Means. IEEE Signal Process. Lett. 16, 973–976 (2009)CrossRefGoogle Scholar
  21. 21.
    Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE_J_IP 16(11), 2778–2786 (2007)MathSciNetGoogle Scholar
  22. 22.
    Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90(432), 1200–1224 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Salmon, J.: On two parameters for denoising with Non-Local Means. IEEE Signal Process. Lett. 17, 269–272 (2010)CrossRefGoogle Scholar
  25. 25.
    Zimmer, S., Didas, S., Weickert, J.: A rotationally invariant block matching strategy improving image denoising with non-local means. In: LNLA (2008)Google Scholar
  26. 26.
    Wang, J., Guo, Y.W., Ying, Y., Liu, Y.L., Peng, Q.S.: Fast non-local algorithm for image denoising. In: ICIP, pp. 1429–1432 (2006)Google Scholar
  27. 27.
    Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering applied to electron cryomicroscopy. In: ISBI, pp. 1331–1334 (2008)Google Scholar
  28. 28.
    Dalalyan, A.S., Tsybakov, A.B.: Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Mach. Learn. 72(1-2), 39–61 (2008)CrossRefGoogle Scholar
  29. 29.
    Salmon, J., Le Pennec, E.: NL-Means and aggregation procedures. In: ICIP, pp. 2977–2980 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Charles-Alban Deledalle
    • 1
  • Vincent Duval
    • 1
  • Joseph Salmon
    • 2
  1. 1.Institut Telecom – Telecom ParisTech – CNRS LTCIParisFrance
  2. 2.Université Paris 7 – Diderot– LPMA – CNRS-UMR 7599ParisFrance

Personalised recommendations