Advertisement

Fast Algorithms for p-elastica Energy with the Application to Image Inpainting and Curve Reconstruction

  • Jooyoung Hahn
  • Ginmo J. Chung
  • Yu Wang
  • Xue-Cheng Tai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)

Abstract

In this paper, we propose fast and efficient algorithms for p-elastica energy (p = 1 or 2). Inspired by the recent algorithm for Euler’s elastica models in [16], the algorithm is extended to solve the problem related to p-elastica energy based on augmented Lagrangian method. The proposed algorithms are as efficient as the previous method in terms of low computational cost per iteration. We provide an algorithm which replaces fast Fourier transform (FFT) by a cheap arithmetic operation at each grid point. Numerical tests on image inpainting are provided to demonstrate the efficiency of the proposed algorithms. We also show examples of using the proposed algorithms in curve reconstruction from unorganized data set.

Keywords

p-elastica energy Augmented Lagrangian method Euler’s elasitca Image inpainting Curve reconstruction Unorganized data set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound 5(1), 63–81 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ardentov, A., Sachkov, Y.L.: Solution to Euler’s elastica problem. Automation and Remote Control 70, 633–643 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bae, E., Shi, J., Tai, X.C.: Graph cuts for curvature based image. IEEE Trans. Image Process (to appear)Google Scholar
  4. 4.
    Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Processing 10(8), 1200–1211 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ballester, C., Caselles, V., Verdera, J.: Disocclusion by joint interpolation of vector fields and gray levels. Multiscale Model. Simul. 2(1), 80–123 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bellettini, G., Dal Maso, G., Paolini, M.: Semicontinuity and relaxation properties of a curvature depending functional in 2d. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 20(2), 247–297 (1993)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bruckstein, A., Netravali, A., Richardson, T.: Epi-convergence of discrete elastica. Appl. Anal. 79, 137–171 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math. 63(2), 564–594 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Chan, T.F., Shen, J.: Nontexture inpainting by curvature driven diffusion (CDD). J. Visul Comm. Image Rep. 12, 436–449 (2001)CrossRefGoogle Scholar
  10. 10.
    El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: IEEE Conference on CVPR, pp. 3257–3264 (2010)Google Scholar
  11. 11.
    Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45, 272–293 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lai, R., Chan, T.F.: A framework for intrinsic image processing on surfaces. Tech. rep., UCLA CAM Report 10-25 (2010)Google Scholar
  13. 13.
    Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, pp. 259–263 (1998)Google Scholar
  14. 14.
    Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth, vol. 662. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In: IEEE Int. Conf. Comp, Vision, Kyoto, Japan (2009)Google Scholar
  16. 16.
    Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Img. Sci. 4, 313–344Google Scholar
  17. 17.
    Tai, X.-C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 502–513. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Wan, M., Wang, Y., Wang, D.: Variational surface reconstruction based on delaunay triangulation and graph cut. International Journal for Numerical Methods in Engineering 85, 206–229 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Yun, S., Woo, H.: Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. In: Pattern Recognition (to appear in, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jooyoung Hahn
    • 1
  • Ginmo J. Chung
    • 2
  • Yu Wang
    • 2
  • Xue-Cheng Tai
    • 2
    • 3
  1. 1.Institute for Mathematics and Scientific ComputingUniversity of GrazAustria
  2. 2.Division of Mathematical Sciences, School of Physical Mathematical SciencesNanyang Technological UniversitySingapore
  3. 3.Mathematics InstituteUniversity of BergenNorway

Personalised recommendations