Advertisement

Abstract

The Beltrami framework treats images as two dimensional manifolds embedded in a joint features-space domain. This way, a color image is considered to be a two dimensional surface embedded in a hybrid special-spectral five dimensional \(\left\{ x,y,R,G,B\right\} \) space. Image selective smoothing, often referred to as a denoising filter, amounts to the process of area minimization of the image surface by mean curvature flow. One interesting variant of the Beltrami framework is treating local neighboring pixels as the feature-space. A distance is defined by the amount of deformation a local patch undergoes while traversing its support in the spatial domain. The question we try to tackle in this note is how to perform patch based denoising accurately, and efficiently. As a motivation we demonstrate the performance of the Beltrami filter in patch-space, and provide useful implementation considerations that allow for parameter tuning and efficient implementation on hand-held devices like smart phones.

Keywords

Beltrami flow patch-space denoising 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(6), 844–847 (2002)CrossRefGoogle Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, pp. 60–65 (2005)Google Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2080–2095 (2007)Google Scholar
  4. 4.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing 11(10), 1141–1151 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 629–639 (1990)Google Scholar
  6. 6.
    Peyre, G.: Manifold models for signals and images. Computer Vision and Image Understanding 113, 249–260 (2009)CrossRefGoogle Scholar
  7. 7.
    Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals. In: ICIP (September 2010)Google Scholar
  8. 8.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing, 310–318 (1998)Google Scholar
  9. 9.
    Sochen, N.A., Gilboa, G., Zeevi, Y.Y.: Color image enhancement by a forward-and-backward adaptive Beltrami flow. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC 2000. LNCS, vol. 1888, pp. 319–328. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Spira, A., Kimmel, R., Sochen, N.A.: Efficient Beltrami flow using a short time kernel. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 511–522. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. IEEE ICCV, pp. 836–846 (1998)Google Scholar
  12. 12.
    Tschumperlé, D., Brun, L.: Non-local image smoothing by applying anisotropic diffusion pde’s in the space of patches. In: ICIP, pp. 2957–2960 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aaron Wetzler
    • 1
  • Ron Kimmel
    • 1
  1. 1.Department of Computer ScienceTechnionIsrael

Personalised recommendations