The BMC Method for the Existential Part of RTCTLK and Interleaved Interpreted Systems

  • Bożena Woźna-Szcześniak
  • Agnieszka Zbrzezny
  • Andrzej Zbrzezny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)


In the paper, we focus on the formal verification of multi-agent systems – modelled by interleaved interpreted systems – by means of the bounded model checking (BMC) method, where specifications are expressed in the existential fragment of the Real-Time Computation Tree Logic augmented to include standard epistemic operators (Rtectlk). In particular, we define an improved SAT-based BMC for Rtectlk, and present performance evaluation of our newly developed BMC method by means of the well known train controller and generic pipeline systems.


Model Check Epistemic Logic Propositional Formula Bounded Model Check Model Check Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: Proc. of DAC 1999, pp. 317–320 (1999)Google Scholar
  2. 2.
    Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear Encodings of Bounded LTL Model Checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cmbridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Eén, N., Sörensson, N.: MiniSat,
  6. 6.
    Eén, N., Sörensson, N.: MiniSat - A SAT Solver with Conflict-Clause Minimization. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Sistla, A.P., Mok, A.K., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Systems 4(4), 331–352 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  9. 9.
    Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? On the properties of knowledge in distributed systems. Journal of the ACM 39(2), 328–376 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time 1: lower bounds. Journal of Computer and System Sciences 38(1), 195–237 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huang, X., Luo, C., van der Meyden, R.: Improved Bounded Model Checking for a Fair Branching-Time Temporal Epistemic Logic. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS (LNAI), vol. 6572, pp. 95–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.: Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptographers protocol. Fundamenta Informaticae 63(2,3), 221–240 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lomuscio, A., Penczek, W., Qu, H.: Partial order reduction for model checking interleaved multi-agent systems. In: AAMAS, pp. 659–666. IFAAMAS Press (2010)Google Scholar
  16. 16.
    Peled, D.: All from one, one for all: On model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Penczek, W., Woźna, B., Zbrzezny, A.: Bounded model checking for the universal fragment of CTL. Fundamenta Informaticae 51(1-2), 135–156 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via OBDDs. Journal of Applied Logic 5(2), 235–251 (2005); Special issue on Logic-based agent verificationCrossRefzbMATHGoogle Scholar
  20. 20.
    van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Proc. of CSFW 2004, pp. 280–291. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  21. 21.
    Woźna-Szcześniak, B.: Bounded model checking for the existential part of Real-Time CTL and knowledge. In: Pre-Proc. of CEE-SET 2009, pp. 178–191. AGH Krakow, Poland (2009)Google Scholar
  22. 22.
    Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Informaticae 85(1-4), 513–531 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bożena Woźna-Szcześniak
    • 1
  • Agnieszka Zbrzezny
    • 1
  • Andrzej Zbrzezny
    • 1
  1. 1.IMCS, Jan Długosz UniversityCzȩstochowaPoland

Personalised recommendations