Evolving Reaction-Diffusion Systems on GPU

  • Lidia Yamamoto
  • Wolfgang Banzhaf
  • Pierre Collet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)


Reaction-diffusion systems contribute to various morphogenetic processes, and can also be used as computation models in real and artificial chemistries. Evolving reaction-diffusion solutions automatically is interesting because it is otherwise difficult to engineer them to achieve a target pattern or to perform a desired task. However most of the existing work focuses on the optimization of parameters of a fixed reaction network. In this paper we extend this state of the art by also exploring the space of alternative reaction networks, with the help of GPU hardware. We compare parameter optimization and reaction network optimization on the evolution of reaction-diffusion solutions leading to simple spot patterns. Our results indicate that these two optimization modes tend to exhibit qualitatively different evolutionary dynamics: in the former, the fitness tends to improve continuously in gentle slopes, while the latter tends to exhibit large periods of stagnation followed by sudden jumps, a sign of punctuated equilibria.


Cluster Head Graphic Processing Unit Reaction Network Target Pattern Spot Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier Science Inc., New York (2005)Google Scholar
  2. 2.
    Banzhaf, W., Harding, S., Langdon, W.B., Wilson, G.: Accelerating Genetic Programming through Graphics Processing Units. In: Genetic Programming Theory and Practice VI, pp. 1–19. Springer, US (2009)CrossRefGoogle Scholar
  3. 3.
    Breyer, J., Ackermann, J., McCaskill, J.: Evolving Reaction-Diffusion Ecosystems with Self-Assembling Structures in Thin Films. Artificial Life 4(1), 25–40 (1998)CrossRefGoogle Scholar
  4. 4.
    Calabretta, R., Nolfi, S., Parisi, D., Wagner, G.P.: Duplication of Modules Facilitates the Evolution of Functional Specialization. Artificial Life 6(1), 69–84 (2000)CrossRefGoogle Scholar
  5. 5.
    Dale, K., Husbands, P.: The Evolution of Reaction-Diffusion Controllers for Minimally Cognitive Agents. Artificial Life 16(1), 1–20 (2010)CrossRefGoogle Scholar
  6. 6.
    Deutsch, A., Dormann, S.: Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhäuser (2005)Google Scholar
  7. 7.
    Fujita, H., Mochizuki, A.: The Origin of the Diversity of Leaf Venation Pattern. Developmental Dynamics 235(10), 351–361 (2006)CrossRefGoogle Scholar
  8. 8.
    Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P., Kasagi, N.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. Journal of Turbulence 9(35), 1–17 (2008)Google Scholar
  9. 9.
    Graván, C.P., Lahoz-Beltra, R.: Evolving morphogenetic fields in the zebra skin pattern based on Turing’s morphogen hypothesis. Int. J. Appl. Math. Comp. Sci. 14(3), 351–361 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gray, P., Scott, S.: Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford Science Publications, Oxford (1990)Google Scholar
  11. 11.
    Grzybowski, B.A., Bishop, K.J.M., Campbell, C.J., Fialkowski, M., Smoukov, S.K.: Micro-and nanotechnology via reaction-diffusion. Soft Matter 1, 114–128 (2005)CrossRefGoogle Scholar
  12. 12.
    Hohm, T., Zitzler, E.: A Hierarchical Approach to Model Parameter Optimization for Developmental Systems. BioSystems 102, 157–167 (2010)CrossRefGoogle Scholar
  13. 13.
    Koch, A.J., Meinhardt, H.: Biological pattern formation: from basic mechanisms to complex structures. Reviews of Modern Physics 66 (1994)Google Scholar
  14. 14.
    Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards Evolutionary Network Reconstruction Tools for Systems Biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 132–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lowe, D., Miorandi, D., Gomez, K.: Activation- inhibition-based data highways for wireless sensor networks. In: Proc. Bionetics. ICST (2009)Google Scholar
  16. 16.
    Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain parallelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proc. GECCO, pp. 1403–1410 (2009)Google Scholar
  17. 17.
    Meinhardt, H.: Models of biological pattern formation. Academic Press, London (1982)Google Scholar
  18. 18.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, 4th edn. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular robots by evolving a hierarchical mechanochemical model. IEEE Computational Intelligence Magazine 6(1), 43–44 (2011)CrossRefGoogle Scholar
  20. 20.
    Molnár Jr., F., Izsák, F., Mészáros, R., Lagzi, I.: Simulation of reaction-diffusion processes in three dimensions using CUDA. ArXiv e-prints (April 2010)Google Scholar
  21. 21.
    Murray, J.D.: Mathematical Biology: Spatial Models and Biomedical Applications, vol. 2. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  22. 22.
    Neglia, G., Reina, G.: Evaluating activator-inhibitor mechanisms for sensors coordination. In: Proc. Bionetics. ICST (2007)Google Scholar
  23. 23.
    Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)CrossRefGoogle Scholar
  24. 24.
    Sanderson, A.R., Meyer, M.D., Kirby, R.M., Johnson, C.R.: A framework for exploring numerical solutions of advection-reaction-diffusion equations using a GPU-based approach. Computing and Visualization in Science 12(4), 155–170 (2009)CrossRefGoogle Scholar
  25. 25.
    Shen, W.M., Will, P., Galstyan, A., Chuong, C.M.: Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots 17(1), 93–105 (2004)CrossRefGoogle Scholar
  26. 26.
    Streichert, F., Spieth, C., Ulmer, H., Zell, A.: How to evolve the head-tail pattern from reaction-diffusion systems. In: NASA/DoD Conference on Evolvable Hardware, pp. 261–268. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  27. 27.
    Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London B 327, 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yamamoto, L., Miorandi, D.: Evaluating the Robustness of Activator-Inhibitor Models for Cluster Head Computation. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 143–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lidia Yamamoto
    • 1
  • Wolfgang Banzhaf
    • 2
  • Pierre Collet
    • 1
  1. 1.LSIIT-FDBTUniversity of StrasbourgFrance
  2. 2.Computer Science DepartmentMemorial University of NewfoundlandCanada

Personalised recommendations