Network Regularity and the Influence of Asynchronism on the Evolution of Cooperation

  • Carlos Grilo
  • Luís Correia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)


In a population of interacting agents, the update dynamics defines the temporal relation between the moments at which agents update the strategies they use when they interact with other agents. The update dynamics is said to be synchronous if this process occurs simultaneously for all the agents and asynchronous if this is not the case. On the other hand, the network of contacts defines who may interact with whom. In this paper, we investigate the features of the network of contacts that play an important role in the influence of the update dynamics on the evolution of cooperative behaviors in a population of agents. First we show that asynchronous dynamics is detrimental to cooperation only when 1) the network of contacts is highly regular and 2) there is no noise in the strategy update process. We then show that, among the different features of the network of contacts, network regularity plays indeed a major role in the influence of the update dynamics, in combination with the temporal scale at which clusters of cooperator agents grow.


Transition Rule Evolutionary Game Preferential Attachment Moran Rule Sequential Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, G., Kuperman, M.: Social games in a social network. Physical Review E 63, 030901 (2001)CrossRefGoogle Scholar
  2. 2.
    Axelrod, R.: The Evolution of Cooperation. Penguin Books (1984)Google Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gershenson, C.: Classification of random boolean networks. In: Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life, pp. 1–8. The MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Grilo, C., Correia, L.: Effects of asynchonism on evolutionary games. Journal of Theoretical Biology 269(1), 109–122 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hauert, C.: Effects of space in 2x2 games. International Journal of Bifurcation and Chaos 12(7), 1531–1548 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643–646 (2004)CrossRefGoogle Scholar
  8. 8.
    Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Physical Review E 65(2), 026107 (2002)CrossRefGoogle Scholar
  9. 9.
    Huberman, B., Glance, N.: Evolutionary games and computer simulations. Proceedings of the National Academy of Sciences of the United States of America 90(16), 7716–7718 (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Newth, D., Cornforth, D.: Asynchronous spatial evolutionary games. BioSystems 95, 120–129 (2009)CrossRefGoogle Scholar
  11. 11.
    Nowak, M., Bonhoeffer, S., May, R.M.: More spatial games. International Journal of Bifurcation and Chaos 4(1), 33–56 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nowak, M., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  13. 13.
    Nowak, M., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)CrossRefGoogle Scholar
  14. 14.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Active linking in evolutionary games. Journal of Theoretical Biology 243, 437–443 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Co-evolution of strategy and structure in complex networks with dynamical linking. Physical Review Letters 97(25), 258103 (2006)CrossRefGoogle Scholar
  16. 16.
    Poncela, J., Gómez-Gardeñes, J., Floría, L.M., Sánchez, A., Moreno, Y.: Complex cooperative networks from evolutionary preferential attachment. PLoS ONE 3(6), e2449 (2008)CrossRefGoogle Scholar
  17. 17.
    Roca, C.O., Cuesta, J.A., Sánchez, A.: Effect of spatial structure on the evolution of cooperation. Physical Review E 80(4), 046106 (2009)CrossRefGoogle Scholar
  18. 18.
    Roca, C.O., Cuesta, J.A., Sánchez, A.: Imperfect imitation can enhance cooperation. Europhysics Letters 87, 48005 (2009)CrossRefGoogle Scholar
  19. 19.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters 95(9), 098104–+ (2005)CrossRefGoogle Scholar
  20. 20.
    Skyrms, B.: The Stag Hunt and the Evolution of Social Structure. Cambridge University Press, Cambridge (2004)Google Scholar
  21. 21.
    Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  22. 22.
    Szabó, G., Tóke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Physical Review E 55(1), 69–73 (1998)CrossRefGoogle Scholar
  23. 23.
    Szolnoki, A., Perc, M., Danku, Z.: Making new connections towards cooperation in the prisoner’s dilemma game. EPL 84(5), 50007 (2008)CrossRefGoogle Scholar
  24. 24.
    Szolnoki, A., Perc, M., Danku, Z.: Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A: Statistical Mechanics and its Applications 387, 2075–2082 (2008)CrossRefGoogle Scholar
  25. 25.
    Tomassini, M., Luthi, L., Giacobini, M.: Hawks and doves on small-world networks. Physical Review E 73(1), 016132 (2006)CrossRefGoogle Scholar
  26. 26.
    Tomassini, M., Luthi, L., Pestelacci, E.: Social dilemmas and cooperation in complex networks. International Journal of Modern Physics C 18, 1173–1185 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Watts, D., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  28. 28.
    Zimmermann, M.G., Eguíluz, V.M.: Coevolution of dynamical states and interaction in dynamic networks. Physical Review E 69, 065102(R) (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Grilo
    • 1
    • 2
  • Luís Correia
    • 2
  1. 1.Dep. Eng. Informática, Escola Superior de Tecnologia e GestãoInstituto Politécnico de LeiriaPortugal
  2. 2.LabMag, Dep. InformáticaFaculdade Ciências da Universidade de LisboaPortugal

Personalised recommendations