A Fuzzy-Rule-Based Approach to the Handling of Inferred Fuzzy Predicates in Database Queries

  • Allel Hadjali
  • Olivier Pivert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)


This paper deals with database preference queries involving fuzzy conditions which do not explicitly refer to an attribute from the database, but whose meaning is rather inferred from a set of fuzzy rules. The approach we propose, which is based on the fuzzy inference pattern called generalized modus ponens, significantly increases the expressivity of fuzzy query languages inasmuch as it allows for new types of predicates. An implementation strategy involving a coupling between a DBMS and an inference engine is outlined.


Membership Function Fuzzy Rule Satisfaction Degree Skyline Query Fuzzy Rule Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hadjali, A., Kaci, S., Prade, H.: Database preferences queries – A possibilistic logic approach with symbolic priorities. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 291–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: mapping strategies and performance evaluation. ACM Trans. on Database Systems 27, 153–187 (2002)CrossRefGoogle Scholar
  3. 3.
    Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. on Fuzzy Systems 3(1), 1–17 (1995)CrossRefGoogle Scholar
  4. 4.
    Kießling, W., Köstler, G.: Preference SQL — Design, implementation, experiences. In: Proc. of VLDB 2002, pp. 990–1001 (2002)Google Scholar
  5. 5.
    Bőrzsőnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE 2001, pp. 421–430 (2001)Google Scholar
  6. 6.
    Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28(4), 427–466 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Koyuncu, M.: Fuzzy querying in intelligent information systems. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 536–547. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hadjali, A., Mokhtari, A., Pivert, O.: A fuzzy-rule-based approach to contextual preference queries. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 532–541. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets, vol. 7. Kluwer Academic Publishers, Netherlands (2000)zbMATHGoogle Scholar
  11. 11.
    Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of Fuzzy Sets Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. Fuzzy Sets and Systems 40(1), 143–202 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pivert, O., Hadjali, A., Smits, G.: On database queries involving inferred fuzzy predicates. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 592–601. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Bouchon-Meunier, B., Dubois, D., Godo, L., Prade, H.: Fuzzy sets and possibility theory in approximate and plausible reasoning. In: Dubois, D., Prade, H., Bezdek, J. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 15–162. Kluwer Academic Publishers, The Netherlands (1999)CrossRefGoogle Scholar
  15. 15.
    Bosc, P., Pivert, O.: SQLf query functionality on top of a regular relational database management system. In: Pons, O., Vila, M., Kacprzyk, J. (eds.) Knowledge Management in Fuzzy Databases, pp. 171–190. Physica-Verlag, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Allel Hadjali
    • 1
  • Olivier Pivert
    • 1
  1. 1.Irisa – Enssat, University of Rennes 1Lannion CedexFrance

Personalised recommendations