On Possibilistic Skyline Queries

  • Patrick Bosc
  • Allel Hadjali
  • Olivier Pivert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)


This paper deals with Skyline queries in the context of possilistic databases, where uncertain attribute values are represented by possibility distributions. In this framework, Skyline queries aim at computing the extent to which any tuple from a given relation is possibly/certainly not dominated by any other tuple from that relation. Beside the interpretation of possibilistic Skyline queries, a basic algorithm suited to their evaluation is provided.


Relational Database Possibility Distribution Skyline Query Possibility Theory Probabilistic Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hadjali, A., Kaci, S., Prade, H.: Database preferences queries – A possibilistic logic approach with symbolic priorities. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 291–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: mapping strategies and performance evaluation. ACM Trans. on Database Systems 27, 153–187 (2002)CrossRefGoogle Scholar
  3. 3.
    Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. on Fuzzy Systems 3, 1–17 (1995)CrossRefGoogle Scholar
  4. 4.
    Kießling, W., Köstler, G.: Preference SQL — Design, implementation, experiences. In: Proc. of VLDB 2002, pp. 990–1001 (2002)Google Scholar
  5. 5.
    Bőrzsőnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE 2001, pp. 421–430 (2001)Google Scholar
  6. 6.
    Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28(4), 427–466 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Information Sciences 34(2), 115–143 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE Trans. on Fuzzy Systems 13(1), 124–139 (2005)CrossRefGoogle Scholar
  10. 10.
    Benjelloun, O., Das Sarma, A., Halevy, A., Theobald, M., Widom, J.: Databases with uncertainty and lineage. VLDB Journal 17(2), 243–264 (2008)CrossRefGoogle Scholar
  11. 11.
    Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In: Proc. of ICDE 2007, pp. 886–895 (2007)Google Scholar
  12. 12.
    Soliman, M., Ilyas, I., Chang, K.C.: Top-k query processing in uncertain databases. In: Proc. of ICDE 2007, pp. 896–905 (2007)Google Scholar
  13. 13.
    Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k queries in probabilistic databases. In: Proc. of DBRank 2008, pp. 556–563 (2008)Google Scholar
  14. 14.
    Bosc, P., Pivert, O.: From Boolean to fuzzy algebraic queries in a possibilistic database framework. In: Proc. of the 13th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004), pp. 25–29 (2004)Google Scholar
  15. 15.
    Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incomplete data. In: Proc. of ICDE 2008, pp. 556–565 (2008)Google Scholar
  16. 16.
    Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proc. of VLDB 2007, pp. 15–26 (2007)Google Scholar
  17. 17.
    Hüllermeier, E., Vladimirskiy, I., Prados Suárez, B., Stauch, E.: Supporting case-based retrieval by similarity skylines: Basic concepts and extensions. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 240–254. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Dubois, D., Prade, H.: Possibility Theory. Plenum, NewYork (1988)CrossRefzbMATHGoogle Scholar
  19. 19.
    Prade, H.: Lipski’s approach to incomplete information databases restated and generalized in the setting of Zadeh’s possibility theory. Information Systems 9(1), 27–42 (1984)CrossRefzbMATHGoogle Scholar
  20. 20.
    Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. of the ACM 31(4), 761–791 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans. Database Syst. 33(4), 1–49 (2008)CrossRefGoogle Scholar
  22. 22.
    Zadrozny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proc. of DEXA 2006 Workshops, pp. 415–419 (2006)Google Scholar
  23. 23.
    Goncalves, M., Tineo, L.J.: Fuzzy dominance skyline queries. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 469–478. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Fung, G.P.C., Lu, W., Du, X.: Dominant and K nearest probabilistic skylines. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrick Bosc
    • 1
  • Allel Hadjali
    • 1
  • Olivier Pivert
    • 1
  1. 1.Irisa – Enssat, University of Rennes 1Lannion CedexFrance

Personalised recommendations