Data Reliability Assessment in a Data Warehouse Opened on the Web

  • Sébastien Destercke
  • Patrice Buche
  • Brigitte Charnomordic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)


This paper presents an ontology-driven workflow that feeds and queries a data warehouse opened on the Web. Data are extracted from data tables in Web documents. As web documents are very heterogeneous in nature, a key issue in this workflow is the ability to assess the reliability of retrieved data. We first recall the main steps of our method to annotate and query Web data tables driven by a domain ontology. Then we propose an original method to assess Web data table reliability from a set of criteria by the means of evidence theory. Finally, we show how we extend the workflow to integrate the reliability assessment step.


Data Warehouse Domain Ontology Belief Function Evidence Theory SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gil, Y., Artz, D.: Towards content trust of web resources. In: WWW 2006: Proceedings of the 15th International Conference on World Wide Web, New York, NY, USA, pp. 565–574 (2006)Google Scholar
  2. 2.
    Quinn, K., Lewis, D., O’Sullivan, D., Wade, V.: An analysis of accuracy experiments carried out over a multi-faceted model of trust. Int. J. of Information Security 8, 103–119 (2009)CrossRefGoogle Scholar
  3. 3.
    Denguir-Rekik, A., Montmain, J., Mauris, G.: A possibilistic-valued multi-criteria decision-making support for marketing activities in e-commerce: Feedback based diagnosis system. European Journal of Operational Research 195(3), 876–888 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buche, P., Dibie-Barthélemy, J., Chebil, H.: Flexible SPARQL querying of web data tables driven by an ontology. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 345–357. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy annotation of web data tables driven by a domain ontology. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 638–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Antoniou, G., van Harmelen, F.: A semantic Web primer. The MIT Press, Cambridge (2008)Google Scholar
  7. 7.
    Buche, P., Couvert, O., Dibie-Barthélemy, J., Hignette, G., Mettler, E., Soler, L.: Flexible querying of web data to simulate bacterial growth in food. Food Microbiology 28(4), 685–693 (2011)CrossRefGoogle Scholar
  8. 8.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buche, P., Haemmerlé, O.: Towards a unified querying system of both structured and semi-structured imprecise data using fuzzy views. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS(LNAI), vol. 1867, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Thomopoulos, R., Buche, P., Haemmerlé, O.: Different kinds of comparison between fuzzy conceptual graphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS(LNAI), vol. 2746, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Shafer, G.: A mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  12. 12.
    Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8, 387–412 (2006)CrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: On several representations of an uncertain body of evidence. In: Gupta, M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 167–181. North-Holland, Amsterdam (1982)Google Scholar
  14. 14.
    Denoeux, T.: Conjunctive and disjunctive combination of belief functions induced by non-distinct bodies of evidence. Artificial Intelligence 172, 234–264 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dubois, D., Fargier, H., Prade, H.: Multi-source information fusion: a way to cope with incoherences. In: Cepadues (ed.) Proc. of French Days on Fuzzy Logic (LFA), pp. 123–130 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sébastien Destercke
    • 1
    • 2
  • Patrice Buche
    • 1
    • 2
  • Brigitte Charnomordic
    • 1
    • 2
  1. 1.UMR IATE and MISTEAMontpellierFrance
  2. 2.LIRMM, CNRS-UM2MontpellierFrance

Personalised recommendations