Advertisement

Exploiting Class-Specific Features in Multi-feature Dissimilarity Space for Efficient Querying of Images

  • Turgay Yilmaz
  • Adnan Yazici
  • Yakup Yildirim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)

Abstract

Combining multiple features is an empirically validated approach in the literature, which increases the accuracy in querying. However, it entails processing intrinsic high-dimensionality of features and complicates realizing an efficient system. Two primary problems can be discussed for efficient querying: representation of images and selection of features. In this paper, a class-specific feature selection approach with a dissimilarity based representation method is proposed. The class-specific features are determined by using the representativeness and discriminativeness of features for each image class. The calculations are based on the statistics on the dissimilarity values of training images.

Keywords

Feature Selection Exhaustive Search Image Database Query Image Multiple Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arevalillo-Herráez, M., Domingo, J., Ferri, F.J.: Combining similarity measures in content-based image retrieval. Pattern Recogn. Lett. 29, 2174–2181 (2008)CrossRefGoogle Scholar
  2. 2.
    Atrey, P.K., Kankanhalli, M.S., Oommen, J.B.: Goal-oriented optimal subset selection of correlated multimedia streams. ACM Trans. Multimedia Comput. Commun. Appl. 3 (February 2007)Google Scholar
  3. 3.
    Bruno, E., Marchand-Maillet, S.: Multimodal preference aggregation for multimedia information retrieval. Journal of Multimedia 4 ( 5 ), 321–329 (2009)CrossRefGoogle Scholar
  4. 4.
    Bruno, E., Moënne-Loccoz, N., Marchand-Maillet, S.: Design of multimodal dissimilarity spaces for retrieval of multimedia documents. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1520–1533 (2008)CrossRefGoogle Scholar
  5. 5.
    Chibelushi, C., Deravi, F., Mason, J.: Adaptive classifier integration for robust pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29(6), 902–907 (1999)CrossRefGoogle Scholar
  6. 6.
    Datta, R., Li, J., Wang, J.Z.: Content-based image retrieval: approaches and trends of the new age. In: MIR 2005: Proc. of the 7th ACM SIGMM Workshop on Multimedia Information Retrieval, pp. 253–262. ACM Press, New York (2005)Google Scholar
  7. 7.
    Duin, R.P.W., Loog, M., Pȩkalska, E., Tax, D.M.J.: Feature-based dissimilarity space classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 46–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594 (2006)CrossRefGoogle Scholar
  10. 10.
    Jain, A., Ross, A.: Learning user-specific parameters in a multibiometric system. In: Proceedings of 2002 International Conference on Image Processing (2002)Google Scholar
  11. 11.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Duin, R.P., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)CrossRefGoogle Scholar
  13. 13.
    Kankanhalli, M., Wang, J.: Experiential sampling on multiple data streams. IEEE Transactions on Multimedia 8(5), 947–955 (2006)CrossRefGoogle Scholar
  14. 14.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)CrossRefGoogle Scholar
  15. 15.
    Kludas, J., Bruno, E., Marchand-Maillet, S.: Information fusion in multimedia information retrieval. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007. LNCS, vol. 4918, pp. 147–159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kludas, J., Bruno, E., Marchand-Maillet, S.: Can feature information interaction help for information fusion in multimedia problems? Multimedia Tools Appl. 42, 57–71 (2009)CrossRefGoogle Scholar
  17. 17.
    Kuncheva, L.I.: Switching between selection and fusion in combining classifiers: an experiment. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(2), 146–156 (2002)CrossRefGoogle Scholar
  18. 18.
    Martínez, J.: Mpeg-7 overview (version 10). Requirements ISO/IEC JTC1 /SC29 /WG11 N6828, International Organisation For Standardisation (October 2003)Google Scholar
  19. 19.
    MPEG: Mpeg-7 reference software experimentation model (2003), http://standards.iso.org/ittf/PubliclyAvailableStandards/c035364_ISO_IEC_ 15938-6(E)_Reference_Software.zip (Online; accessed February 01, 2011)Google Scholar
  20. 20.
    Nguyen, G.P., Worring, M., Smeulders, A.W.M.: Similarity learning via dissimilarity space in cbir. In: Proc. of the 8th ACM International Workshop on Multimedia Information Retrieval, MIR 2006, pp. 107–116. ACM, New York (2006)Google Scholar
  21. 21.
    Pekalska, E., Paclík, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research 2, 175–211 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Poh, N., Kittler, J.: Multimodal Information Fusion: Theory and Applications for Human-Computer Interaction. 8, pp. 153–169. Academic Press, London (2010)Google Scholar
  23. 23.
    Snidaro, L., Niu, R., Foresti, G., Varshney, P.: Quality-based fusion of multiple video sensors for video surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(4), 1044–1051 (2007)CrossRefGoogle Scholar
  24. 24.
    Swets, D.L., Weng, J.J.: Shoslif-o: Shoslif for object recognition and image retrieval (phase ii). Tech. Rep. CPS 95-39, Michigan State University, Department of Computer Science (1995)Google Scholar
  25. 25.
    Uysal, M., Yarman-Vural, F.T.: Selection of the best representative feature and membership assignment for content-based fuzzy image database. In: CIVR, pp. 141–151 (2003)Google Scholar
  26. 26.
    Wu, Y., Chang, E.Y., Chang, K.C.C., Smith, J.R.: Optimal multimodal fusion for multimedia data analysis. In: Proc. of the 12th Annual ACM International Conf. on Multimedia, MULTIMEDIA 2004, pp. 572–579. ACM, New York (2004)CrossRefGoogle Scholar
  27. 27.
    Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics 22(3), 418–435 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Turgay Yilmaz
    • 1
  • Adnan Yazici
    • 1
  • Yakup Yildirim
    • 1
  1. 1.Dept. of Computer EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations