Optimal Admission Control for a QoS-Aware Service-Oriented System

  • Marco Abundo
  • Valeria Cardellini
  • Francesco Lo Presti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6994)


In the service computing paradigm, a service broker can build new applications by composing network-accessible services offered by loosely coupled independent providers. In this paper, we address the admission control problem for a a service broker which offers to prospective users a composite service with a range of different Quality of Service (QoS) classes. We formulate the problem as a Markov Decision Process (MDP) problem with the goal of maximizing the broker revenue while guaranteeing non-functional QoS requirements to its already admitted users. To assess the effectiveness of the MDP-based admission control, we present experimental results where we compare the optimal decisions obtained by the analytical solution of the MDP with other policies.


Admission Control Markov Decision Process Service Level Agree Composite Service Service Broker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. Softw. Eng. 33(6), 369–384 (2007)CrossRefGoogle Scholar
  2. 2.
    Bannazadeh, H., Leon-Garcia, A.: Online optimization in application admission control for service oriented systems. In: Proc. IEEE APSCC 2008 (2008)Google Scholar
  3. 3.
    Beckmann, M., Subramanian, R.: Optimal replacement policy for a redundant system. OR Spectrum 6(1), 47–51 (1984)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bellucci, A., Cardellini, V., Di Valerio, V., Iannucci, S.: A scalable and highly available brokering service for SLA-based composite services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 527–541. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bichler, M., Setzer, T.: Admission control for media on demand services. Service Oriented Computing and Applications 1(1), 65–73 (2007)CrossRefGoogle Scholar
  6. 6.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for QoS-aware binding and re-binding of composite web services. J. Syst. Softw. 81 (2008)Google Scholar
  7. 7.
    Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-based service selection for web service composition supporting multiple QoS classes. In: Proc. IEEE ICWS 2007, pp. 743–750 (2007)Google Scholar
  8. 8.
    Chen, M., Feldman, R.: Optimal replacement policies with minimal repair and age-dependent costs. Eur. J. Oper. Res. 98(1), 75–84 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition: using Markov decision processes. Int’l J. Web Service Res. 2(1) (2005)Google Scholar
  10. 10.
    Gao, A., Yang, D.q., Tang, S.w., Zhang, M.: Web Service Composition Using Markov Decision Processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 308–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    OASIS: Web Services Business Process Execution Language Version 2.0 (January 2007)Google Scholar
  12. 12.
    Pillai, S., Narendra, N.: Optimal replacement policy of services based on Markov decision process. In: Proc. IEEE SCC 2009, pp. 176–183 (2009)Google Scholar
  13. 13.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic, Dynamic Programming. Wiley, Chichester (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Wu, C., Bertsekas, D.: Admission control for wireless networks. Tech. Rep. LIDS-P- 2466, Lab. for Information and Decision Systems, MIT (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Abundo
    • 1
  • Valeria Cardellini
    • 1
  • Francesco Lo Presti
    • 1
  1. 1.DISPUniversità di Roma “Tor Vergata”Italy

Personalised recommendations