Advertisement

Vacancies Decay: Results of Calculations

  • Miron Amusia
  • Larissa Chernysheva
  • Victor Yarzhemsky
Chapter

Abstract

In this chapter, we collect and comment figures and tables, which present data, obtained in calculations of photoelectron satellite intensities and line shapes, intensities of Auger spectra, some line shapes of low-energy Auger lines, and radiation widths.

Keywords

Configuration Interaction Spectroscopic Factor Radiation Width Auger Decay Configuration Interaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 6.1.
    Svensson S, Eriksson B, Martensson N, Wendin G, Gelius U (1988) Electron shake-up and correlation satellites and continuum shake-off distributions in X-ray photoelectron spectra of rare gas atoms. J Electron Spectrosc Relat Phenom 47:327–384Google Scholar
  2. 6.2.
    Svensson S, Martensson N, Gelius U (1987) Observation of autoionizing resonances in core-electron shakeup spectra. Phys Rev Lett 58:2639–2641Google Scholar
  3. 6.3.
    Kikas A, Osborne SJ, Ausmees A, Svensson S, Sairanen OP, Askela S (1996) High-resolution study of the correlation satellites in photoelectron spectra of rare gases. J Electron Spectrosc Relat Phenom 77:241–266Google Scholar
  4. 6.4.
    Kaneyasu T, Hikosaka Y, Shigemasa E, Penent F, Lablanquie P, Aoto T, Ito K (2007) Autoionization of the Ne +  Rydberg states formed viavalence photoemission. J Phys B At Mol Opt Phys 40:4047–4060Google Scholar
  5. 6.5.
    Hikosaka Y, Aoto T, Lablanquie P, Penent F, Shigemasa E, Ito K (2006) Experimental investigation of core—valence double photoionization PRL. Phys Rev Lett 97:053003Google Scholar
  6. 6.6.
    Svennson S, Martensson N, Basilier E, Malmquist PA, Gelius U, Siegbahn K (1976) Lifetime broadening and CI-resonances observed in ESCA. Phys Scripta 14:141–147Google Scholar
  7. 6.7.
    Yarzhemsky VG, Teterin YuA, Teterin AYu, Amusia MYa, Nefedov VI (2005) The structure of 4p X-ray photoelectron spectra of Xe and compounds of Cs, Ba, Ln. J Surface Invest X-ray Synchr Neutron Tech 6:3–8Google Scholar
  8. 6.8.
    Albiez A, Toma M, Weber W, Mehlhorn W (1990) KL 2, 3 ionization in neon by electron impact in the range 1.5–50 keV: cross-section and alignment. Z Phys D 16:97–106Google Scholar
  9. 6.9.
    Pahler M, Caldwell CD, Schaphorst SJ, Krause MO (1993) Intrinsic line widths of neon 2s2p(1, 3 P)nl 2 L correlation satellites. J Phys B At Mol Opt Phys 26:1617–1625Google Scholar
  10. 6.10.
    Seah MP, Gilmore IS (2006) Quantitative X-ray photoelectron spectroscopy: quadrupole effects, shake-up, Shirley background and relative sensitivity factors from database of true X-ray photoelectron spectra. Phys Rev B 73:174113Google Scholar
  11. 6.11.
    Glans P, LaVilla RE, Ohno M, Svennson S, Bray G, Wassdahl N, Nordgren J (1994) Determination of the lifetime width of the argon L 1-hole state. Phys Rev A 47:1539–1542Google Scholar
  12. 6.12.
    Yarzhemsky VG, Reich T, Chernysheva LV, Streubel P, Szargan R (1996) Lineshape asymmetry parameters in X-ray photoelectron spectra J Electron Spectrosc Relat Phenom 77:15–24Google Scholar
  13. 6.13.
    Kelly HP (1975) K Auger rates calculated for Ne + . Phys Rev A 11:556–565Google Scholar
  14. 6.14.
    Tulkki J, Åberg T, Mäntykenttä A, Aksela H (1992) Relativistic multichannel calculation of the NeKLL and Ar L 2 M 2, 3 M 2, 3 Auger transition rates. Phys Rev A 43:1357–1366Google Scholar
  15. 6.15.
    Yarzhemsky VG, Sgamellotti A (2002) Auger rates of second row atoms calculated by many-body perturbation theory J Electron Spectrosc Relat Phenom 125:13–24Google Scholar
  16. 6.16.
    Bhalla CP (1973) Effect of configuration interaction of K-shell Auger spectrum of neon. Phys Lett A 44:103–104Google Scholar
  17. 6.17.
    Lohman B, Fritzsche S (1996) Intensities and angular distribution parameters for the KLL Auger transitions of atomic oxygen. J Phys B At Mol Opt Phys 29:5711–5723Google Scholar
  18. 6.18.
    Saha HP (1994) Theoretical studies of the K-shell Auger spectrum of atomic oxygen. Phys Rev A 49:894–898Google Scholar
  19. 6.19.
    Petrini D, de Araujo FX (1994) Auger process following 1s-photoionization: OIII lines. Astron Astrophys 282:315–317Google Scholar
  20. 6.20.
    Caldwell CD, Krause MO (1993) K-shell Auger spectrum of atomic oxygen. Phys Rev A 47:R759–R762Google Scholar
  21. 6.21.
    Kilin VA, Lazarev DA (1998) Double Auger decay of 3d vacancy in krypton. Russian Phys J 4(10):1001–1009Google Scholar
  22. 6.22.
    Ehresmann A, Kilin VA, Chernysheva LV, Schmoranzer H, Amusia MYa, Schartner K-H (1993) Three-electron radiative transitions. J Phys B At Mol Opt Phys 26:L97–L102Google Scholar
  23. 6.23.
    Kilin VA (2004) Correlation effects in multiple ionization processes. Dr. Sc.Thesis, Tomsk State University (in Russian)Google Scholar
  24. 6.24.
    Ehresmann A, Kilin VA, Schmoranzer H, Schartner K-H, Amusia MYa (1995) Assignment of new fluorescence lines from Kr III 4p36s5d states observed after excitation of the Kr I 3d 5 ∕ 2 95p-resonance. J Phys B At Mol Opt Phys 28:965–977Google Scholar
  25. 6.25.
    Amusia MYa, Kilin VA, Ehresmann A, Schmoranzer H, Schartner K-H (1993) Double-autoionization decay of resonantly excited single-electron states. J Phys B At Mol Opt Phys 26:1281–1300Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miron Amusia
    • 1
    • 2
  • Larissa Chernysheva
    • 2
  • Victor Yarzhemsky
    • 3
  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Ioffe Physica-Technical InstituteSt. PetersburgRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations