Advertisement

Main Points of the Theory of Photoabsorption

Chapter
  • 2.6k Downloads

Abstract

As photoabsorption or photoionization in this book we consider a process, in which a photon of energy ω and momentum κ, κ ;= ω ∕ c (c is the speed of light) is absorbed by a target—an atom or an ion. As a result, the target object can be either excited or ionized. Excitation means a transition of an atom or ion to one or several discrete energy levels.

Keywords

Oscillator Strength Atomic Electron Dipole Matrix Element Incoming Photon Outgoing Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.1.
    Fano U (1961) Effects of configuration interaction co intensities and phase shifts. Phys Rev 124:1866–1878Google Scholar
  2. 1.2.
    Kabachnik NM, Sazhina TJ (1976) Angular distribution and polarization of photoelectrons in the region of resonances. J Phys B 9:1681–1698Google Scholar
  3. 1.3.
    Ron A, Goldberg IB, Stein J, Manson ST, Pratt RH, Yin RY (1994) Relativistic, retardation, and multipole effects in photoionization cross sections: Z, n, and l dependence. Phys Rev A 50(2):1312–1320Google Scholar
  4. 1.4.
    Amusia MYa, Arifov PU, Baltenkov AS, Grinberg AA, Shapiro SG (1974) Calculation of current induced by photon momentum in gaseous Ar. Phys Lett A 47:66Google Scholar
  5. 1.5.
    Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ (2001) Non-dipole parameters in angular distributions of electrons in photoionization of noble gas atoms. Phys Rev A 63:052506Google Scholar
  6. 1.6.
    Cooper JW (1990) Multipole corrections to the angular distribution of photoelectrons at low energies. Phys Rev A 42:6942–6945Google Scholar
  7. 1.7.
    Cooper JW (1992) Erratum: multipole corrections to the angular distribution of photoelectrons at low energies. Phys Rev A 45:3362Google Scholar
  8. 1.8.
    Cooper JW (1993) Photoelectron-angular-distribution parameters for rare-gas subshells. Phys Rev A 47:1841–1851Google Scholar
  9. 1.9.
    Bechler A, Pratt RH (1990) Higher multipole and retardation corrections to the dipole angular distributions of L-shell photoelectrons ejected by polarized photons. Phys Rev A 42:6400–6413Google Scholar
  10. 1.10.
    Amusia MYa, Baltenkov AS, Felfli Z, Msezane AZ (1999) Large non-dipole correlation effects near atomic photoionization thresholds. Phys Rev A 59(4): R1–R4Google Scholar
  11. 1.11.
    Cherepkov NA (1973) Angular distribution of photoelectrons with a given spin orientation. Sov JETP 65:933–946Google Scholar
  12. 1.12.
    Cherepkov NA (1972) Angular distribution and spin orientation of photoelectrons ejected by circularly polarized light. Phys Lett A 40:119–121Google Scholar
  13. 1.13.
    Cherepkov NA (1981) Angular distribution of molecular photoelectrons with defined spin orientation. J Phys B At Mol Opt Phys 14:L73–L78Google Scholar
  14. 1.14.
    Amusia MYa, Cherepkov NA, Chernysheva LV, Felfli Z, Msezane AZ (2004) Spin polarization of photoelectrons from 3d-electrons of Xe, Cs, and Ba. Phys Rev A 70:062709Google Scholar
  15. 1.15.
    Woodgate GK (1970) Elementary atomic structure. McGraw-Hill, New YorkGoogle Scholar
  16. 1.16.
    Cherepkov NA, Chernysheva LV (1977) Random phase approximation with exchange for open-shell atom. Phys Lett A 60(2):103–105Google Scholar
  17. 1.17.
    Amusia MYa, Cherepkov NA, Chernysheva LV, Manson ST (2000) Photoionization of atomic iodine and its ions. Phys Rev A 61:020701Google Scholar
  18. 1.18.
    Chernysheva LV (1977) Software package for atomic calculations. Izv USSR Acad Sci Ser. 41(12):2518–2528 (in Russian)Google Scholar
  19. 1.19.
    Amusia MYa, Cherepkov NA, Chernysheva LV, Manson ST (2000) Multielectron correlation effects in Xe + +  formation resulting from the photoionization of Xe +  ions. J Phys B At Mol Opt Phys 33(1): L37–L42Google Scholar
  20. 1.20.
    Amusia MYa, Chernysheva LV, Ivanov VK, Manson ST (2002) Photoionization of 4d electrons in I  +  and I  + + . Phys. Rev. A 65(3):032714Google Scholar
  21. 1.21.
    Vesnicheva GA, Malyshev GM, Orlov VF, Cherepkov NA (1986) Sov Phys-Tech Phys 31:402Google Scholar
  22. 1.22.
    Mead RD., Lykke KR, Lineberger WC (1984) Photodetachment threshold laws. In: Eichler J, Hertel IV, Stolterfoht N (eds) Proceedings of the XIII ICPEAC on electronic and atomic collisions. Elsevier, Amsterdam, pp 721–730Google Scholar
  23. 1.23.
    Amusia MYa, Gribakin GF, Ivanov VK, Chernysheva LV (1986) Photodetachment of negative iodine ion. Izv USSR Acad Sci Ser Phys 50(7):1274–1278 (in Russian)Google Scholar
  24. 1.24.
    Gribakin GF, Gultsev BV, Ivanov VK, Kuchiev MYu (1990) Izv Vuzov USSR Phys 33:86–96 (in Russian)Google Scholar
  25. 1.25.
    Ivanov VK (1999) Many-body effects in negative ion photodetachment. J Phys B At Mol Opt Phys 32(12):R67–R101Google Scholar
  26. 1.26.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162-163Google Scholar
  27. 1.27.
    Bertsch GF., Bulgac A, Tománek D, Wang Y (1991) Collective plasmon excitations in C60 clusters. Phys Rev Lett 67:2690–2693Google Scholar
  28. 1.28.
    Hertel IV, Steger H, de Vries J et al (1992) Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. Phys Rev Lett 68:784–787Google Scholar
  29. 1.29.
    Amusia MYa, Baltenkov AS, Krakov BG (1998) Photodetachment of negative fullerenes ions. Phys Lett A 243:99–105Google Scholar
  30. 1.30.
    Baltenkov AS (1999) Resonances in the photoionization cross section of M@C60 endohedrals. Phys Lett A 254:203–209Google Scholar
  31. 1.31.
    Amusia MYa, Baltenkov AS (2006) Effect of plasma oscillations of C60 collectivized electrons on photoionization of endohedral noble-gas atoms. Phys Rev A 73:062723Google Scholar
  32. 1.32.
    Amusia MYa, Baltenkov AS (2006) Vacancy decay in endohedral atoms. Phys Rev A 73:063206Google Scholar
  33. 1.33.
    Amusia MYa, Baltenkov AS, Dolmatov VK, Manson ST, Msezane AZ (2004) Confinement resonances in photoelectron angular distributions from endohedral atoms. Phys Rev A 70:023201Google Scholar
  34. 1.34.
    Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane A (2006) Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe@C60. J Exper Theor Phys 206(1):53–60 (in Russian, JETP 102(1):56–60)Google Scholar
  35. 1.35.
    Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Giant resonances of endohedral atoms. JETP Lett 89(6):275–279Google Scholar
  36. 1.36.
    Forró L, Mihály L (2001) Electronic properties of doped fullerenes. Rep Prog Phys 64(5):649Google Scholar
  37. 1.37.
    Amusia MYa, Chernysheva LV, Liverts EZ (2009) Photoionization of atoms stuffed inside a two-shell fullerene. Phys Rev A 80:032503-1–032503-12Google Scholar
  38. 1.38.
    Cabrera-Trujillo JM, Alonso JA, Iñiguez MP, López MJ, Rubio A (1996) Theoretical study of the binding of Na clusters encapsulated in the C240 fullerene. Phys Rev B 53:16059–16066Google Scholar
  39. 1.39.
    Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ, Nordgren J (2001) Directed motion of electrons in gases under the action of photon flux. Phys Rev A 63:052512Google Scholar
  40. 1.40.
    Amusia MYa., Baltenkov AS, Grinberg AA, Shapiro SG (1975) Investigation of the current due to photon momentum in monoatomic gases. Zhur Exp Theor Phys 68:28–32 (in Russian, JETP, 41, 14)Google Scholar
  41. 1.41.
    Amusia MYa., Dolmatov VK (1980) Electron entrainment by resonance frequency light. Zhur Exp Theor Phys 79:1664–1670 (in Russian)Google Scholar
  42. 1.42.
    Amusia MYa., Gribakin GF, Tsemekhman KL (1989) Single and double photoionization of Xe atom above the 4d-subshell threshold. Izv USSR Acad Sci Phys Ser 53(9):1672–1676 (in Russian)Google Scholar
  43. 1.43.
    Amusia MYa, Gribakin GF, Tsemekhman KL, Tsemekhman VL (1990) Single and double photoionization in Xe and Ba above the 4d-threshold. J Phys B At Mol Opt Phys 23(3):393–402Google Scholar
  44. 1.44.
    Svensson S, Eriksson B, Martensson N, Wendin G, Gelius U (1988) Electron shake-up and correlation satellites and continuum shake-off distribution in X-ray photoelectron spectra of the rare gas atoms. J Electron Spectr Relat Phenom 47:327–384Google Scholar
  45. 1.45.
    Amusia MY, Kuchiev MYu, Sheinerman SA, Sheftel SI (1977) Intershell correlations in the formation of single charged ions near the Ar L-shell ionization threshold. J Phys B 10: L535–L539Google Scholar
  46. 1.46.
    Kuchiev MYu, Sheinerman SA (1989) Post-collision interaction in atomic processes. Sov Phys Usp 32:569–587Google Scholar
  47. 1.47.
    Kikas A, Osborne SJ, Ausmees A, Svensson S, Sairanen OP, Askela SJ (1996) High resolution study of the correlation satellites in photoelectron spectra of rare gases. J Electron Spectr Relat Phenom 77(3):241–266Google Scholar
  48. 1.48.
    Amusia MYa, Krivec R, Mandelzweig VB (2004) Two-electron photoionization of He and helium-like ions. In: Glöckle W, Tornow W (eds) Few body 17. Elsevier, Amsterdam, pp S301–S304Google Scholar
  49. 1.49.
    Amusia MY, Gorshkov VG, Drukarev EG, Kazachkov MP (1975) Two-electron photoionization of helium. J Phys B 8:1248–1266Google Scholar
  50. 1.50.
    Amusia MY, Drukarev EG, Krivec R, Mandelzweig VB (2003) Ultra-relativistic limit for the two-electron photoionization cross section. Phys Rev A 66(5) 052706-1–5Google Scholar
  51. 1.51.
    Amusia MY, Drukarev EG, Krivec R, Mandelzweig VB (2003) Shape variation of the two-electron photoionization spectrum with the photon energy growth (with E. Liverts, E.G. Drukarev, R. Krivec and V.B. Mandelzweig). Phys Rev A 71:012715 (2005)Google Scholar
  52. 1.52.
    Yakhontov VL, Amusia MYa (1996) Radiative double electron capture in fast heavy ion-atom collisions. Phys Lett A 221:328–334Google Scholar
  53. 1.53.
    Yakhontov VL, Amusia MYa (1997) Radiative double electron capture in collisions of fast heavy ions with solid carbon targets. Phys Rev A 55(3):1952–1961Google Scholar
  54. 1.54.
    Simon A, Warczak A, Elkafrawy T, Tanis JA (2010) Radiative double electron capture in collisions of O8 +  ions with carbon. Phys Rev Lett 104(12):123001–123004Google Scholar
  55. 1.55.
    Amusia MYa, Lee IS, Sheftel SI (1977) Photoionization of excited states in Ar and Xe Atoms. Izv USSR Acad Sci Ser Fiz 41(12):2529–2537Google Scholar
  56. 1.56.
    Amusia MYa, Avdonina NB (1983) Characteristic features in photoionization of excited atomic states. J Phys B At Mol Phys 16(18):L543–545Google Scholar
  57. 1.57.
    Amusia MYa, Avdonina NB (1990) The role of intershell correlations in photoionization of excited ions and atoms. Sov Phys J Tech Fiz (USSR Acad Sci) 60(3):66–72Google Scholar
  58. 1.58.
    Bethe HA, Salpeter EE (1958) Quantum mechanics of one-and two-electron atoms. Springer, BerlinGoogle Scholar
  59. 1.59.
    Mehlhorn W, Starace AF (eds) (1982) Handbuch der Physik, vol 31. Springer, Berlin, p 46Google Scholar
  60. 1.60.
    Drake GWF, Starace AF (eds) (1996) Atomic, molecular, and optical physics handbook. AIP Press, Woodbury, NY, pp 305–320Google Scholar
  61. 1.61.
    Crasemann B, Cooper JW (eds) (1975) Atomic inner-shell processes, vol 1. Academic, NY, pp 170–181Google Scholar
  62. 1.62.
    Yan M, Sadedhpour HR, Dalgarno A (1998) Photoionization cross sections of He and H2. Astrophys J 496(2):1044–1050Google Scholar
  63. 1.63.
    Dias EWB, Chakraborty HS, Deshmukh PC, Manson ST, Hemmers O, Glans P, Hansen DL, Wang H, Whitfield SB, Lindle DW, Wehlitz R, Levin JC, Sellin IA, Perera RCC (1997) Breakdown of the independent particle approximation in high-energy photoionization. Phys Rev Lett 78:4553–4556Google Scholar
  64. 1.64.
    Amusia MYa, Avdonina NB, Drukarev EG, Manson ST, Pratt RH (2000) Modification of the high energy behavior of the atomic photoionization cross section. Phys Rev Lett 85(22):4703–4706Google Scholar
  65. 1.65.
    Jabbur RJ, Pratt RH (1964) High-frequency region of the spectrum of electron and positron Bremsstrahlung. II. Phys Rev 133: B1090–B1101Google Scholar
  66. 1.66.
    Rau ARP, Fano U (1967) Transition matrix elements for large momentum or energy transfer. Phys Rev 162:68–70Google Scholar
  67. 1.67.
    Amusia MYa (1981) Collective effects in an isolated atom. Izv USSR Acad Sci Ser Phys 45(12):2242–2254Google Scholar
  68. 1.68.
    Amusia MYa (1984) Interaction of complex atoms with radiation. Izv USSR Acad Sci Ser Phys 48(4):642–650Google Scholar
  69. 1.69.
    Hansen DL, Hemmers O, Wang H et al (1999) Validity of the independent-particle approximation in x-ray photoemission: The exception, not the rule. Phys Rev A 60: R2641–R2652Google Scholar
  70. 1.70.
    Amusia MYa, Gorshkov VG, Drukarev EG, Kazachkov MP (1975) Two-electron photoionization of helium. J Phys B 8:1248–1266Google Scholar
  71. 1.71.
    Amusia MYa, Drukarev EG, Krivec R, Mandelzweig VB (2003) Ultra-relativistic limit for the two-electron photoionization cross section. Phys Rev A 66:052706Google Scholar
  72. 1.72.
    Amusia MYa (1996) Theory of photoionization: VUV and soft X-ray frequency region. In: Becker U, Shirley D (eds) Photoionization in VUV and Soft X-Ray Energy Region. Plenum Press, NY, pp 1–46Google Scholar
  73. 1.73.
    Amusia MYa, Connerade J-P (2000) Collective motion probed by light. Rep Prog Phys 63:41–70Google Scholar
  74. 1.74.
    Amusia MYa (2004) Random phase approximation: from giant to intra-doublet resonances. Radiat Phys Chem 70:237–251Google Scholar
  75. 1.75.
    Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ (2005) Near-threshold behavior of angular anisotropy parameters in negative ions photo-detachment. Phys Rev A 72:032727Google Scholar
  76. 1.76.
    Amusia MYa, Chernysheva LV (2006) Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms. J Phys B At Mol Opt Phys 39:4627–4636Google Scholar
  77. 1.77.
    Amusia MYa (2007) Fast Electron scattering as a tool to study target’s structure, review. J Electron Spectrosc Relat Phenom 159:81–90Google Scholar
  78. 1.78.
    Amusia MYa (2007) Photoionization and vacancy decay of endohedral atoms, review. J Electron Spectrosc Relat Phenom 161:112–120Google Scholar
  79. 1.79.
    Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Photoionization of 3d electrons of Xe, Cs and Ba endohedral atoms: comparative analyses. Cent Eur J Phys 6(1):14–25Google Scholar
  80. 1.80.
    Amusia MYa, Chernysheva LV (2008) On the angular distribution and spin polarization of the photoelectrons from semi-filled shell atoms. http://arxiv.org/abs/physics/0701040
  81. 1.81.
    Amusia MYa, Baltenkov AS, Chernysheva LV (2008) On the photoionization of the outer electrons in noble gas endohedral atoms. JETP (Zhur Exp Theor Fyz) 134 2(8):221–230Google Scholar
  82. 1.82.
    Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Photoionization of subvalent electrons in noble gas endohedrals: interference of three resonances. J Phys B At Mol Opt Phys 41:165201Google Scholar
  83. 1.83.
    Dolmatov VK (2009) Photoionization of atoms encaged in spherical fullerenes. In: Sabin JR, Brändas EJ (eds) Theory of confined quantum systems, Part 2. Advances in quantum chemistry, vol 58. Academic, USA, pp 13–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Ioffe Physica-Technical InstituteSt. PetersburgRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations