Skip to main content

Main Points of the Theory of Photoabsorption

  • Chapter
  • First Online:
Handbook of Theoretical Atomic Physics

Abstract

As photoabsorption or photoionization in this book we consider a process, in which a photon of energy ω and momentum κ, κ ;= ω ∕ c (c is the speed of light) is absorbed by a target—an atom or an ion. As a result, the target object can be either excited or ionized. Excitation means a transition of an atom or ion to one or several discrete energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In other chapters, this and the subsequent references will be given mentioning also its number. For example, [1.1] will be presented in other chapters as [1.1].

References

  1. Fano U (1961) Effects of configuration interaction co intensities and phase shifts. Phys Rev 124:1866–1878

    Google Scholar 

  2. Kabachnik NM, Sazhina TJ (1976) Angular distribution and polarization of photoelectrons in the region of resonances. J Phys B 9:1681–1698

    Google Scholar 

  3. Ron A, Goldberg IB, Stein J, Manson ST, Pratt RH, Yin RY (1994) Relativistic, retardation, and multipole effects in photoionization cross sections: Z, n, and l dependence. Phys Rev A 50(2):1312–1320

    Google Scholar 

  4. Amusia MYa, Arifov PU, Baltenkov AS, Grinberg AA, Shapiro SG (1974) Calculation of current induced by photon momentum in gaseous Ar. Phys Lett A 47:66

    Google Scholar 

  5. Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ (2001) Non-dipole parameters in angular distributions of electrons in photoionization of noble gas atoms. Phys Rev A 63:052506

    Google Scholar 

  6. Cooper JW (1990) Multipole corrections to the angular distribution of photoelectrons at low energies. Phys Rev A 42:6942–6945

    Google Scholar 

  7. Cooper JW (1992) Erratum: multipole corrections to the angular distribution of photoelectrons at low energies. Phys Rev A 45:3362

    Google Scholar 

  8. Cooper JW (1993) Photoelectron-angular-distribution parameters for rare-gas subshells. Phys Rev A 47:1841–1851

    Google Scholar 

  9. Bechler A, Pratt RH (1990) Higher multipole and retardation corrections to the dipole angular distributions of L-shell photoelectrons ejected by polarized photons. Phys Rev A 42:6400–6413

    Google Scholar 

  10. Amusia MYa, Baltenkov AS, Felfli Z, Msezane AZ (1999) Large non-dipole correlation effects near atomic photoionization thresholds. Phys Rev A 59(4): R1–R4

    Google Scholar 

  11. Cherepkov NA (1973) Angular distribution of photoelectrons with a given spin orientation. Sov JETP 65:933–946

    Google Scholar 

  12. Cherepkov NA (1972) Angular distribution and spin orientation of photoelectrons ejected by circularly polarized light. Phys Lett A 40:119–121

    Google Scholar 

  13. Cherepkov NA (1981) Angular distribution of molecular photoelectrons with defined spin orientation. J Phys B At Mol Opt Phys 14:L73–L78

    Google Scholar 

  14. Amusia MYa, Cherepkov NA, Chernysheva LV, Felfli Z, Msezane AZ (2004) Spin polarization of photoelectrons from 3d-electrons of Xe, Cs, and Ba. Phys Rev A 70:062709

    Google Scholar 

  15. Woodgate GK (1970) Elementary atomic structure. McGraw-Hill, New York

    Google Scholar 

  16. Cherepkov NA, Chernysheva LV (1977) Random phase approximation with exchange for open-shell atom. Phys Lett A 60(2):103–105

    Google Scholar 

  17. Amusia MYa, Cherepkov NA, Chernysheva LV, Manson ST (2000) Photoionization of atomic iodine and its ions. Phys Rev A 61:020701

    Google Scholar 

  18. Chernysheva LV (1977) Software package for atomic calculations. Izv USSR Acad Sci Ser. 41(12):2518–2528 (in Russian)

    Google Scholar 

  19. Amusia MYa, Cherepkov NA, Chernysheva LV, Manson ST (2000) Multielectron correlation effects in Xe + +  formation resulting from the photoionization of Xe +  ions. J Phys B At Mol Opt Phys 33(1): L37–L42

    Google Scholar 

  20. Amusia MYa, Chernysheva LV, Ivanov VK, Manson ST (2002) Photoionization of 4d electrons in I  +  and I  + + . Phys. Rev. A 65(3):032714

    Google Scholar 

  21. Vesnicheva GA, Malyshev GM, Orlov VF, Cherepkov NA (1986) Sov Phys-Tech Phys 31:402

    Google Scholar 

  22. Mead RD., Lykke KR, Lineberger WC (1984) Photodetachment threshold laws. In: Eichler J, Hertel IV, Stolterfoht N (eds) Proceedings of the XIII ICPEAC on electronic and atomic collisions. Elsevier, Amsterdam, pp 721–730

    Google Scholar 

  23. Amusia MYa, Gribakin GF, Ivanov VK, Chernysheva LV (1986) Photodetachment of negative iodine ion. Izv USSR Acad Sci Ser Phys 50(7):1274–1278 (in Russian)

    Google Scholar 

  24. Gribakin GF, Gultsev BV, Ivanov VK, Kuchiev MYu (1990) Izv Vuzov USSR Phys 33:86–96 (in Russian)

    Google Scholar 

  25. Ivanov VK (1999) Many-body effects in negative ion photodetachment. J Phys B At Mol Opt Phys 32(12):R67–R101

    Google Scholar 

  26. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162-163

    Google Scholar 

  27. Bertsch GF., Bulgac A, Tománek D, Wang Y (1991) Collective plasmon excitations in C60 clusters. Phys Rev Lett 67:2690–2693

    Google Scholar 

  28. Hertel IV, Steger H, de Vries J et al (1992) Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. Phys Rev Lett 68:784–787

    Google Scholar 

  29. Amusia MYa, Baltenkov AS, Krakov BG (1998) Photodetachment of negative fullerenes ions. Phys Lett A 243:99–105

    Google Scholar 

  30. Baltenkov AS (1999) Resonances in the photoionization cross section of M@C60 endohedrals. Phys Lett A 254:203–209

    Google Scholar 

  31. Amusia MYa, Baltenkov AS (2006) Effect of plasma oscillations of C60 collectivized electrons on photoionization of endohedral noble-gas atoms. Phys Rev A 73:062723

    Google Scholar 

  32. Amusia MYa, Baltenkov AS (2006) Vacancy decay in endohedral atoms. Phys Rev A 73:063206

    Google Scholar 

  33. Amusia MYa, Baltenkov AS, Dolmatov VK, Manson ST, Msezane AZ (2004) Confinement resonances in photoelectron angular distributions from endohedral atoms. Phys Rev A 70:023201

    Google Scholar 

  34. Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane A (2006) Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe@C60. J Exper Theor Phys 206(1):53–60 (in Russian, JETP 102(1):56–60)

    Google Scholar 

  35. Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Giant resonances of endohedral atoms. JETP Lett 89(6):275–279

    Google Scholar 

  36. Forró L, Mihály L (2001) Electronic properties of doped fullerenes. Rep Prog Phys 64(5):649

    Google Scholar 

  37. Amusia MYa, Chernysheva LV, Liverts EZ (2009) Photoionization of atoms stuffed inside a two-shell fullerene. Phys Rev A 80:032503-1–032503-12

    Google Scholar 

  38. Cabrera-Trujillo JM, Alonso JA, Iñiguez MP, López MJ, Rubio A (1996) Theoretical study of the binding of Na clusters encapsulated in the C240 fullerene. Phys Rev B 53:16059–16066

    Google Scholar 

  39. Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ, Nordgren J (2001) Directed motion of electrons in gases under the action of photon flux. Phys Rev A 63:052512

    Google Scholar 

  40. Amusia MYa., Baltenkov AS, Grinberg AA, Shapiro SG (1975) Investigation of the current due to photon momentum in monoatomic gases. Zhur Exp Theor Phys 68:28–32 (in Russian, JETP, 41, 14)

    Google Scholar 

  41. Amusia MYa., Dolmatov VK (1980) Electron entrainment by resonance frequency light. Zhur Exp Theor Phys 79:1664–1670 (in Russian)

    Google Scholar 

  42. Amusia MYa., Gribakin GF, Tsemekhman KL (1989) Single and double photoionization of Xe atom above the 4d-subshell threshold. Izv USSR Acad Sci Phys Ser 53(9):1672–1676 (in Russian)

    Google Scholar 

  43. Amusia MYa, Gribakin GF, Tsemekhman KL, Tsemekhman VL (1990) Single and double photoionization in Xe and Ba above the 4d-threshold. J Phys B At Mol Opt Phys 23(3):393–402

    Google Scholar 

  44. Svensson S, Eriksson B, Martensson N, Wendin G, Gelius U (1988) Electron shake-up and correlation satellites and continuum shake-off distribution in X-ray photoelectron spectra of the rare gas atoms. J Electron Spectr Relat Phenom 47:327–384

    Google Scholar 

  45. Amusia MY, Kuchiev MYu, Sheinerman SA, Sheftel SI (1977) Intershell correlations in the formation of single charged ions near the Ar L-shell ionization threshold. J Phys B 10: L535–L539

    Google Scholar 

  46. Kuchiev MYu, Sheinerman SA (1989) Post-collision interaction in atomic processes. Sov Phys Usp 32:569–587

    Google Scholar 

  47. Kikas A, Osborne SJ, Ausmees A, Svensson S, Sairanen OP, Askela SJ (1996) High resolution study of the correlation satellites in photoelectron spectra of rare gases. J Electron Spectr Relat Phenom 77(3):241–266

    Google Scholar 

  48. Amusia MYa, Krivec R, Mandelzweig VB (2004) Two-electron photoionization of He and helium-like ions. In: Glöckle W, Tornow W (eds) Few body 17. Elsevier, Amsterdam, pp S301–S304

    Google Scholar 

  49. Amusia MY, Gorshkov VG, Drukarev EG, Kazachkov MP (1975) Two-electron photoionization of helium. J Phys B 8:1248–1266

    Google Scholar 

  50. Amusia MY, Drukarev EG, Krivec R, Mandelzweig VB (2003) Ultra-relativistic limit for the two-electron photoionization cross section. Phys Rev A 66(5) 052706-1–5

    Google Scholar 

  51. Amusia MY, Drukarev EG, Krivec R, Mandelzweig VB (2003) Shape variation of the two-electron photoionization spectrum with the photon energy growth (with E. Liverts, E.G. Drukarev, R. Krivec and V.B. Mandelzweig). Phys Rev A 71:012715 (2005)

    Google Scholar 

  52. Yakhontov VL, Amusia MYa (1996) Radiative double electron capture in fast heavy ion-atom collisions. Phys Lett A 221:328–334

    Google Scholar 

  53. Yakhontov VL, Amusia MYa (1997) Radiative double electron capture in collisions of fast heavy ions with solid carbon targets. Phys Rev A 55(3):1952–1961

    Google Scholar 

  54. Simon A, Warczak A, Elkafrawy T, Tanis JA (2010) Radiative double electron capture in collisions of O8 +  ions with carbon. Phys Rev Lett 104(12):123001–123004

    Google Scholar 

  55. Amusia MYa, Lee IS, Sheftel SI (1977) Photoionization of excited states in Ar and Xe Atoms. Izv USSR Acad Sci Ser Fiz 41(12):2529–2537

    Google Scholar 

  56. Amusia MYa, Avdonina NB (1983) Characteristic features in photoionization of excited atomic states. J Phys B At Mol Phys 16(18):L543–545

    Google Scholar 

  57. Amusia MYa, Avdonina NB (1990) The role of intershell correlations in photoionization of excited ions and atoms. Sov Phys J Tech Fiz (USSR Acad Sci) 60(3):66–72

    Google Scholar 

  58. Bethe HA, Salpeter EE (1958) Quantum mechanics of one-and two-electron atoms. Springer, Berlin

    Google Scholar 

  59. Mehlhorn W, Starace AF (eds) (1982) Handbuch der Physik, vol 31. Springer, Berlin, p 46

    Google Scholar 

  60. Drake GWF, Starace AF (eds) (1996) Atomic, molecular, and optical physics handbook. AIP Press, Woodbury, NY, pp 305–320

    Google Scholar 

  61. Crasemann B, Cooper JW (eds) (1975) Atomic inner-shell processes, vol 1. Academic, NY, pp 170–181

    Google Scholar 

  62. Yan M, Sadedhpour HR, Dalgarno A (1998) Photoionization cross sections of He and H2. Astrophys J 496(2):1044–1050

    Google Scholar 

  63. Dias EWB, Chakraborty HS, Deshmukh PC, Manson ST, Hemmers O, Glans P, Hansen DL, Wang H, Whitfield SB, Lindle DW, Wehlitz R, Levin JC, Sellin IA, Perera RCC (1997) Breakdown of the independent particle approximation in high-energy photoionization. Phys Rev Lett 78:4553–4556

    Google Scholar 

  64. Amusia MYa, Avdonina NB, Drukarev EG, Manson ST, Pratt RH (2000) Modification of the high energy behavior of the atomic photoionization cross section. Phys Rev Lett 85(22):4703–4706

    Google Scholar 

  65. Jabbur RJ, Pratt RH (1964) High-frequency region of the spectrum of electron and positron Bremsstrahlung. II. Phys Rev 133: B1090–B1101

    Google Scholar 

  66. Rau ARP, Fano U (1967) Transition matrix elements for large momentum or energy transfer. Phys Rev 162:68–70

    Google Scholar 

  67. Amusia MYa (1981) Collective effects in an isolated atom. Izv USSR Acad Sci Ser Phys 45(12):2242–2254

    Google Scholar 

  68. Amusia MYa (1984) Interaction of complex atoms with radiation. Izv USSR Acad Sci Ser Phys 48(4):642–650

    Google Scholar 

  69. Hansen DL, Hemmers O, Wang H et al (1999) Validity of the independent-particle approximation in x-ray photoemission: The exception, not the rule. Phys Rev A 60: R2641–R2652

    Google Scholar 

  70. Amusia MYa, Gorshkov VG, Drukarev EG, Kazachkov MP (1975) Two-electron photoionization of helium. J Phys B 8:1248–1266

    Google Scholar 

  71. Amusia MYa, Drukarev EG, Krivec R, Mandelzweig VB (2003) Ultra-relativistic limit for the two-electron photoionization cross section. Phys Rev A 66:052706

    Google Scholar 

  72. Amusia MYa (1996) Theory of photoionization: VUV and soft X-ray frequency region. In: Becker U, Shirley D (eds) Photoionization in VUV and Soft X-Ray Energy Region. Plenum Press, NY, pp 1–46

    Google Scholar 

  73. Amusia MYa, Connerade J-P (2000) Collective motion probed by light. Rep Prog Phys 63:41–70

    Google Scholar 

  74. Amusia MYa (2004) Random phase approximation: from giant to intra-doublet resonances. Radiat Phys Chem 70:237–251

    Google Scholar 

  75. Amusia MYa, Baltenkov AS, Chernysheva LV, Felfli Z, Msezane AZ (2005) Near-threshold behavior of angular anisotropy parameters in negative ions photo-detachment. Phys Rev A 72:032727

    Google Scholar 

  76. Amusia MYa, Chernysheva LV (2006) Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms. J Phys B At Mol Opt Phys 39:4627–4636

    Google Scholar 

  77. Amusia MYa (2007) Fast Electron scattering as a tool to study target’s structure, review. J Electron Spectrosc Relat Phenom 159:81–90

    Google Scholar 

  78. Amusia MYa (2007) Photoionization and vacancy decay of endohedral atoms, review. J Electron Spectrosc Relat Phenom 161:112–120

    Google Scholar 

  79. Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Photoionization of 3d electrons of Xe, Cs and Ba endohedral atoms: comparative analyses. Cent Eur J Phys 6(1):14–25

    Google Scholar 

  80. Amusia MYa, Chernysheva LV (2008) On the angular distribution and spin polarization of the photoelectrons from semi-filled shell atoms. http://arxiv.org/abs/physics/0701040

  81. Amusia MYa, Baltenkov AS, Chernysheva LV (2008) On the photoionization of the outer electrons in noble gas endohedral atoms. JETP (Zhur Exp Theor Fyz) 134 2(8):221–230

    Google Scholar 

  82. Amusia MYa, Baltenkov AS, Chernysheva LV (2008) Photoionization of subvalent electrons in noble gas endohedrals: interference of three resonances. J Phys B At Mol Opt Phys 41:165201

    Google Scholar 

  83. Dolmatov VK (2009) Photoionization of atoms encaged in spherical fullerenes. In: Sabin JR, Brändas EJ (eds) Theory of confined quantum systems, Part 2. Advances in quantum chemistry, vol 58. Academic, USA, pp 13–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amusia, M., Chernysheva, L., Yarzhemsky, V. (2012). Main Points of the Theory of Photoabsorption. In: Handbook of Theoretical Atomic Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24752-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24752-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24751-4

  • Online ISBN: 978-3-642-24752-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics