Advertisement

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems with Markovian Agents

  • Davide Cerotti
  • Enrico Barbierato
  • Marco Gribaudo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6977)

Abstract

Distributed systems are characterized by a large number of similar interconnected objects that cooperate by exchanging messages. Practical application of such systems can be found in computer systems, sensor networks, and in particular in critical infrastructures. Though formalisms like Markovian Agents provide a formal support to describe these systems and evaluate related performance indices, very few tools are currently available to define models in such languages, moreover they do not provide generally specific functionalities to ease the definition of the locations of the interacting components. This paper presents a prototype tool suite capable of supporting the study of the number of hops and the transmission delay in a critical infrastructure.

Keywords

Wireless Sensor Network Central Station Power Grid Tool Suite Elliptical Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anastasiou, N., Horng, T.-C., Knottenbelt, W.: Deriving generalised stochastic petri net performance models from high-precision location tracking data. In: Proceedings of the ValueTools 2011, ValueTools 2011. IEEE, Los Alamitos (2011)Google Scholar
  2. 2.
    Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In: Graph Drawing Software, pp. 77–103. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Bobbio, A., Bonanni, G., Ciancamerla, E., Clemente, R., Iacomini, A., Minichino, M., Scarlatti, A., Terruggia, R., Zendri, E.: Unavailability of critical SCADA communication links interconnecting a power grid and a telco network. Reliability Engineering and System Safety 95, 1345–1357 (2010)CrossRefGoogle Scholar
  4. 4.
    Bobbio, A., Cerotti, D., Gribaudo, M.: Presenting dynamic markovian agents with a road tunnel application. In: MASCOTS 2009. IEEE-CS, Los Alamitos (2009)Google Scholar
  5. 5.
    Bobbio, A., Terruggia, R., Boellis, A., Ciancamerla, E., Minichino, M.: A tool for network reliability analysis. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 417–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bonanni, G., Ciancamerla, E., Minichino, M., Clemente, R., Iacomini, A., Scarlatti, A., Zendri, E., Terruggia, R.: Exploiting stochastic indicators of interdependent infrastructures: the service availability of interconnected networks. In: Safety, Reliability and Risk Analysis: Theory, Methods and Applications, vol. 3. Taylor & Francis, Abington (2009)Google Scholar
  7. 7.
    Bruneo, D., Scarpa, M., Bobbio, A., Cerotti, D., Gribaudo, M.: Markovian agent modeling swarm intelligence algorithms in wireless sensor networks. Performance Evaluation (in press, corrected proof: 2011)Google Scholar
  8. 8.
    Cerotti, D.: Interacting Markovian Agents. PhD thesis, Universita degli Studi di Torino (2010)Google Scholar
  9. 9.
    Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster propagation in heterogeneous media via markovian agents. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 328–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C.T., Manzoni, P.: A markovian agent model for fire propagation in outdoor environments. In: Aldini, A., Bernardo, M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 131–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Chiasserini, C.F., Gaeta, R., Garetto, M., Gribaudo, M., Manini, D., Sereno, M.: Fluid models for large-scale wireless sensor networks. Performance Evaluation 64(7-8), 715–736 (2007)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Dunn, A.: A model of wildfire propagation using the interacting spatial automata formalism. PhD thesis, University of Western Australia (2007)Google Scholar
  14. 14.
    Galpin, V.: Modelling network performance with a spatial stochastic process algebra. In: International Conference on Advanced Information Networking and Applications, pp. 41–49 (2009)Google Scholar
  15. 15.
    Di Gregorio, S., Rongo, R., Serra, R., Spataro, W., Spezzano, G., Talia, D., Villani, M.: Parallel simulation of soil contamination by cellular automata. In: Parcella, pp. 295–297 (1996)Google Scholar
  16. 16.
    Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks using interacting markovian agents. In: PerCom, pp. 300–305 (2008)Google Scholar
  17. 17.
    Gribaudo, M., Raiteri, D.C., Franceschinis, G.: Drawnet, a customizable multi-formalism, multi-solution tool for the quantitative evaluation of systems. In: QEST, pp. 257–258 (2005)Google Scholar
  18. 18.
    DrawNet Project (2011), http://www.drawnet.com
  19. 19.
    Jimnez, A., Posadas, A.M.: A moore’s cellular automaton model to get probabilistic seismic hazard maps for different magnitude releases: A case study for greece. Tectonophysics 423(1-4), 35–42 (2006)CrossRefGoogle Scholar
  20. 20.
    Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure. Comput. Oper. Res. 36, 16–26 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)Google Scholar
  22. 22.
    Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT University Press, Cambridge (2001)zbMATHGoogle Scholar
  23. 23.
    Siregar, P., Sinteff, J.P., Chahine, M., Lebeux, P.: A cellular automata model of the heart and its coupling with a qualitative model. Comput. Biomed. Res. 29(3), 222–246 (1996)CrossRefGoogle Scholar
  24. 24.
    Svendsen, N.K., Wolthusen, S.D.: Graph Models of Critical Infrastructure Interdependencies. In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp. 208–211. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Trivedi, K.S.: Probability and statistics with reliability, queuing and computer science applications, 2nd edn., pp. 215–217. John Wiley and Sons Ltd., Chichester (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Davide Cerotti
    • 1
  • Enrico Barbierato
    • 2
  • Marco Gribaudo
    • 3
  1. 1.Dipartimento di InformaticaUniversità di TorinoTorinoItaly
  2. 2.Dip. InformaticaUniversità Piemonte OrientaleAlessandriaItaly
  3. 3.Dip. Elettronica ed InformazionePolitecnico di MilanoItaly

Personalised recommendations