Abstract
Software performance evaluation relies on the ability of simple models to predict the performance of complex systems. Often, however, the models are not capturing potentially relevant effects in system behavior, such as sharing of memory caches or sharing of cores by hardware threads. The goal of this paper is to investigate whether and to what degree a simple linear adjustment of service demands in software performance models captures these effects and thus improves accuracy. Outlined experiments explore the limits of the approach on two hardware platforms that include shared caches and hardware threads, with results indicating that the approach can improve throughput prediction accuracy significantly, but can also lead to loss of accuracy when the performance models are otherwise defective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babka, V., Bulej, L., Decky, M., Kraft, J., Libic, P., Marek, L., Seceleanu, C., Tuma, P.: Resource Usage Modeling, Q-ImPrESS Project Deliverable D3.3 (2008), http://www.q-impress.eu/
Babka, V.: Cache Sharing Sensitivity of SPEC CPU 2006 Benchmarks, Tech. Rep. No. 2009/3, Dep. of SW Engineering, Charles University in Prague (June 2009), http://d3s.mff.cuni.cz/
Babka, V., Bulej, L., Ciancone, A., Filieri, A., Hauck, M., Libic, P., Marek, L., Stammel, J., Tuma, P.: Prediction Validation, Q-ImPrESS Project Deliverable D4.2 (2010), http://www.q-impress.eu/
Babka, V., Libič, P., Tůma, P.: Timing Penalties Associated with Cache Sharing. In: Proceedings of MASCOTS 2009. IEEE, Los Alamitos (2009)
Babka, V., Marek, L., Tůma, P.: When Misses Differ: Investigating Impact of Cache Misses on Observed Performance. In: Proceedings of ICPADS 2009, pp. 112–119. IEEE, Los Alamitos (2009)
Babka, V., Tůma, P.: Investigating Cache Parameters of x86 Family Processors. In: Kaeli, D., Sachs, K. (eds.) SPEC Benchmark Workshop 2009. LNCS, vol. 5419, pp. 77–96. Springer, Heidelberg (2009)
Babka, V., Tůma, P., Bulej, L.: Validating Model-Driven Performance Predictions on Random Software Systems. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 3–19. Springer, Heidelberg (2010)
Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-driven Performance Prediction. J. Syst. Softw. 82(1) (2009)
Blackburn, S.M., Cheng, P., McKinley, K.S.: Myths and Realities: The Performance Impact of Garbage Collection. SIGMETRICS Perform. Eval. Rev. 32(1) (2004)
Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting Inter-Thread Cache Contention on a Chip Multi-Processor Architecture. In: Proceedings of HPCA 2005. IEEE CS, Los Alamitos (2005)
Click, C.: Evaluate 2010 Keynote (October 2010), http://evaluate2010.inf.usi.ch/
Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate Language for Model-Driven Predictive Analysis of Performance and Reliability. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)
Happe, J., Westermann, D., Sachs, K., Kapová, L.: Statistical Inference of Software Performance Models for Parametric Performance Completions. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 20–35. Springer, Heidelberg (2010)
Kalibera, T., Bulej, L., Tůma, P.: Benchmark Precision and Random Initial State. In: Proceedings of SPECTS 2005, pp. 853–862. SCS (June 2005)
Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Systems Using Queueing Petri Nets. IEEE Trans. Software Eng. 32(7) (2006)
Kounev, S., Buchmann, A.: SimQPN: A Tool and Methodology for Analyzing Queueing Petri Net Models by Means of Simulation. Perform. Eval. 63(4) (2006)
Lavenberg, S.S., Squillante, M.S.: Performance Evaluation in Industry: A Personal Perspective. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, pp. 3–13. Springer, Heidelberg (2000)
Libič, P., Tůma, P.: Towards Garbage Collection Modeling, Tech. Rep. No. 20011/1, Dep. of Distributed and Dependable Systems, Charles University in Prague (January 2011), http://d3s.mff.cuni.cz/
Libič, P., Tůma, P., Bulej, L.: Issues in Performance Modeling of Applications with Garbage Collection. In: Proceedings of QUASOSS 2009, pp. 3–10. ACM, New York (2009)
Liu, F., Guo, F., Solihin, Y., Kim, S., Eker, A.: Characterizing and Modeling the Behavior of Context Switch Misses. In: Proceedings of PACT 2008. ACM, New York (2008)
Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing Wrong Data Without Doing Anything Obviously Wrong! In: Proceedings of ASPLOS 2009, pp. 265–276. ACM, New York (2009)
Standard Performance Evaluation Corporation: SPEC CPU 2006 Benchmark, http://www.spec.org/cpu2006/
The Q-ImPrESS Project Consortium: Quality Impact Prediction for Evolving Service-oriented Software, http://www.q-impress.eu/
Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer, Heidelberg (2004)
Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache Contention and Application Performance Prediction for Multi-core Systems. In: Proceedings of ISPASS 2010. IEEE, Los Alamitos (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Babka, V., Tůma, P. (2011). Can Linear Approximation Improve Performance Prediction ?. In: Thomas, N. (eds) Computer Performance Engineering. EPEW 2011. Lecture Notes in Computer Science, vol 6977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24749-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-24749-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24748-4
Online ISBN: 978-3-642-24749-1
eBook Packages: Computer ScienceComputer Science (R0)