Skip to main content

Can Linear Approximation Improve Performance Prediction ?

  • Conference paper
Computer Performance Engineering (EPEW 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6977))

Included in the following conference series:

Abstract

Software performance evaluation relies on the ability of simple models to predict the performance of complex systems. Often, however, the models are not capturing potentially relevant effects in system behavior, such as sharing of memory caches or sharing of cores by hardware threads. The goal of this paper is to investigate whether and to what degree a simple linear adjustment of service demands in software performance models captures these effects and thus improves accuracy. Outlined experiments explore the limits of the approach on two hardware platforms that include shared caches and hardware threads, with results indicating that the approach can improve throughput prediction accuracy significantly, but can also lead to loss of accuracy when the performance models are otherwise defective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babka, V., Bulej, L., Decky, M., Kraft, J., Libic, P., Marek, L., Seceleanu, C., Tuma, P.: Resource Usage Modeling, Q-ImPrESS Project Deliverable D3.3 (2008), http://www.q-impress.eu/

  2. Babka, V.: Cache Sharing Sensitivity of SPEC CPU 2006 Benchmarks, Tech. Rep. No. 2009/3, Dep. of SW Engineering, Charles University in Prague (June 2009), http://d3s.mff.cuni.cz/

  3. Babka, V., Bulej, L., Ciancone, A., Filieri, A., Hauck, M., Libic, P., Marek, L., Stammel, J., Tuma, P.: Prediction Validation, Q-ImPrESS Project Deliverable D4.2 (2010), http://www.q-impress.eu/

  4. Babka, V., Libič, P., Tůma, P.: Timing Penalties Associated with Cache Sharing. In: Proceedings of MASCOTS 2009. IEEE, Los Alamitos (2009)

    Google Scholar 

  5. Babka, V., Marek, L., Tůma, P.: When Misses Differ: Investigating Impact of Cache Misses on Observed Performance. In: Proceedings of ICPADS 2009, pp. 112–119. IEEE, Los Alamitos (2009)

    Google Scholar 

  6. Babka, V., Tůma, P.: Investigating Cache Parameters of x86 Family Processors. In: Kaeli, D., Sachs, K. (eds.) SPEC Benchmark Workshop 2009. LNCS, vol. 5419, pp. 77–96. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Babka, V., Tůma, P., Bulej, L.: Validating Model-Driven Performance Predictions on Random Software Systems. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 3–19. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-driven Performance Prediction. J. Syst. Softw. 82(1) (2009)

    Google Scholar 

  9. Blackburn, S.M., Cheng, P., McKinley, K.S.: Myths and Realities: The Performance Impact of Garbage Collection. SIGMETRICS Perform. Eval. Rev. 32(1) (2004)

    Google Scholar 

  10. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting Inter-Thread Cache Contention on a Chip Multi-Processor Architecture. In: Proceedings of HPCA 2005. IEEE CS, Los Alamitos (2005)

    Google Scholar 

  11. Click, C.: Evaluate 2010 Keynote (October 2010), http://evaluate2010.inf.usi.ch/

  12. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate Language for Model-Driven Predictive Analysis of Performance and Reliability. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Happe, J., Westermann, D., Sachs, K., Kapová, L.: Statistical Inference of Software Performance Models for Parametric Performance Completions. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 20–35. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Kalibera, T., Bulej, L., Tůma, P.: Benchmark Precision and Random Initial State. In: Proceedings of SPECTS 2005, pp. 853–862. SCS (June 2005)

    Google Scholar 

  15. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Systems Using Queueing Petri Nets. IEEE Trans. Software Eng. 32(7) (2006)

    Google Scholar 

  16. Kounev, S., Buchmann, A.: SimQPN: A Tool and Methodology for Analyzing Queueing Petri Net Models by Means of Simulation. Perform. Eval. 63(4) (2006)

    Google Scholar 

  17. Lavenberg, S.S., Squillante, M.S.: Performance Evaluation in Industry: A Personal Perspective. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, pp. 3–13. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Libič, P., Tůma, P.: Towards Garbage Collection Modeling, Tech. Rep. No. 20011/1, Dep. of Distributed and Dependable Systems, Charles University in Prague (January 2011), http://d3s.mff.cuni.cz/

  19. Libič, P., Tůma, P., Bulej, L.: Issues in Performance Modeling of Applications with Garbage Collection. In: Proceedings of QUASOSS 2009, pp. 3–10. ACM, New York (2009)

    Google Scholar 

  20. Liu, F., Guo, F., Solihin, Y., Kim, S., Eker, A.: Characterizing and Modeling the Behavior of Context Switch Misses. In: Proceedings of PACT 2008. ACM, New York (2008)

    Google Scholar 

  21. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing Wrong Data Without Doing Anything Obviously Wrong! In: Proceedings of ASPLOS 2009, pp. 265–276. ACM, New York (2009)

    Google Scholar 

  22. Standard Performance Evaluation Corporation: SPEC CPU 2006 Benchmark, http://www.spec.org/cpu2006/

  23. The Q-ImPrESS Project Consortium: Quality Impact Prediction for Evolving Service-oriented Software, http://www.q-impress.eu/

  24. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  25. Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache Contention and Application Performance Prediction for Multi-core Systems. In: Proceedings of ISPASS 2010. IEEE, Los Alamitos (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babka, V., Tůma, P. (2011). Can Linear Approximation Improve Performance Prediction ?. In: Thomas, N. (eds) Computer Performance Engineering. EPEW 2011. Lecture Notes in Computer Science, vol 6977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24749-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24749-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24748-4

  • Online ISBN: 978-3-642-24749-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics