Isotropic 2D Quadrangle Meshing with Size and Orientation Control

  • Bertrand Pellenard
  • Pierre Alliez
  • Jean-Marie Morvan

Summary

We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

Keywords

Local Parameterization Voronoi Diagram Quadrangle Mesh Orientation Control Barycentric Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)CrossRefGoogle Scholar
  2. 2.
    Antani, L., Delage, C., Alliez, P.: Mesh sizing with additively weighted Voronoi diagrams. In: Proc. of the 16th Int. Meshing Roundtable, pp. 335–346 (2007)Google Scholar
  3. 3.
    Bern, M.W., Eppstein, D.: Quadrilateral meshing by circle packing. Int. J. Comput. Geometry Appl. 10(4), 347–360 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Boier-Martin, I.M., Rushmeier, H.E., Jin, J.: Parameterization of triangle meshes over quadrilateral domains. In: Symposium on Geometry Processing, pp. 197–208 (2004)Google Scholar
  5. 5.
    Boissonnat, J.-D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete & Computational Geometry 19(4), 485–519 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bommes, D., Lempfer, T., Kobbelt, L.: Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30(2), 375–384 (2011)CrossRefGoogle Scholar
  7. 7.
    Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph. 28(3) (2009)Google Scholar
  8. 8.
    Borouchaki, H., Frey, P.J.: Adaptive triangular-quadrilateral mesh generation. International Journal of Numerical Methods in Engineering 41, 915–934 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bremner, D., Hurtado, F., Ramaswami, S., Sacristan, V.: Small strictly convex quadrilateral meshes of point sets. Algorithmica 38(2), 317–339 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    CGAL, Computational Geometry Algorithms Library, http://www.cgal.org
  11. 11.
    Principal component analysis in CGAL, http://www.cgal.org
  12. 12.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23, 905–914 (2004)CrossRefGoogle Scholar
  13. 13.
    Crane, K., Desbrun, M., Schröder, P.: Trivial connections on discrete surfaces. Comput. Graph. Forum 29(5), 1525–1533 (2010)CrossRefGoogle Scholar
  14. 14.
    Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Graph. 25(3), 1057–1066 (2006)CrossRefGoogle Scholar
  15. 15.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Garland, M., Willmott, A.J., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: SI3D, pp. 49–58 (2001)Google Scholar
  17. 17.
    Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangulation with orientation and alignment control. In: ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia 2008, pp. 147:1–147:9 (2008)Google Scholar
  18. 18.
    Daniels II, J., Silva, C.T., Cohenn, E.: Localized quadrilateral coarsening. Comput. Graph. Forum 28(5), 1437–1444 (2009)CrossRefGoogle Scholar
  19. 19.
    Lai, Y.-K., Kobbelt, L., Hu, S.-M.: An incremental approach to feature aligned quad dominant remeshing. In: Proceedings of the ACM symposium on Solid and physical modeling, SPM 2008, pp. 137–145 (2008)Google Scholar
  20. 20.
    Lévy, B., Liu, Y.: L p centroidal voronoi tessellation and its applications. ACM Trans. Graph. 29(4) (2010)Google Scholar
  21. 21.
    Marinov, M., Kobbelt, L.: Direct anisotropic quad-dominant remeshing. In: Pacific Conference on Computer Graphics and Applications, pp. 207–216 (2004)Google Scholar
  22. 22.
    Owen, S.J., Staten, M.L., Canann, S.A., Saigal, S.: Q-morph: an indirect approach to advancing front quad meshing. International Journal for Numerical Methods in Engineering 44(9), 1317–1340 (1999)CrossRefMATHGoogle Scholar
  23. 23.
    Pietroni, N., Tarini, M., Cignoni, P.: Almost isometric mesh parameterization through abstract domains. IEEE Trans. Vis. Comput. Graph. 16(4), 621–635 (2010)CrossRefGoogle Scholar
  24. 24.
    Quadros, W.R., Ramaswami, K., Prinz, F.B., Gurumoorthy, B.: Laytracks: A new approach to automated quadrilateral mesh generation using medial axis transform. In: IMR, pp. 239–250 (2000)Google Scholar
  25. 25.
    Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)CrossRefGoogle Scholar
  26. 26.
    Rineau, L., Yvinec, M.: A generic software design for delaunay refinement meshing. Comput. Geom. 38(1-2), 100–110 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1-3), 21–74 (2002)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Shimada, K., Liao, J.-H., Itoh, T.: Quadrilateral meshing with directionality control through the packing of square cells. In: IMR, pp. 61–75 (1998)Google Scholar
  29. 29.
    Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Symposium on Geometry Processing, pp. 201–210 (2006)Google Scholar
  30. 30.
    Valette, S., Chassery, J.-M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23(3), 381–390 (2004)CrossRefGoogle Scholar
  31. 31.
    Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14(2), 369–381 (2008)CrossRefGoogle Scholar
  32. 32.
    Wolfenbarger, P., Jung, J., Dohrmann, C.R., Witkowski, W.R., Panthaki, M.J., Gerstle, W.H.: A global minimization-based, automatic quadrilateral meshing algorithm. In: IMR, pp. 87–103 (1998)Google Scholar
  33. 33.
    Zhang, M., Huang, J., Liu, X., Bao, H.: A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29(4) (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bertrand Pellenard
    • 1
  • Pierre Alliez
    • 1
  • Jean-Marie Morvan
    • 2
    • 3
  1. 1.INRIA Sophia AntipolisMéditerranéeFrance
  2. 2.Universitée Lyon 1/CNRS, Institut Camille JordanVilleurbanne - CedexFrance
  3. 3.GMSV Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations