Families of Meshes Minimizing P1 Interpolation Error

  • A. Agouzal
  • K. Lipnikov
  • Y. Vassilevski
Conference paper

Summary

For a given function, we consider a problem of minimizing the P 1 interpolation error on a set of triangulations with a fixed number of triangles. The minimization problem is reformulated as a problem of generating a mesh which is quasi-uniform in a specially designed metric. For functions with indefinite Hessian, we show existence of a family of metrics with highly diverse properties. The family may include both anisotropic and isotropic metrics. A developed theory is verified with numerical examples.

Keywords

Minimization Problem Posteriori Error Interpolation Error Initial Mesh Posteriori Error Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agouzal, A., Lipnikov, K., Vassilevski, Y.: Adaptive generation of quasi-optimal tetrahedral meshes. East-West J. Numer. Math. 7, 223–244 (1999)MATHMathSciNetGoogle Scholar
  2. 2.
    Agouzal, A., Lipnikov, K., Vassilevski, Y.: Hessian-free metric-based mesh adaptation via geometry of interpolation error. Comp. Math. Math. Phys. 50, 124–138 (2010)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Agouzal, A., Vassilevski, Y.: Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comp. Meth. Appl. Mech. Engnr. 199, 2195–2203 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Agouzal, A., Lipnikov, K., Vassilevski, Y.: Edge-based a posteriori error estimators for generating quasi-optimal simplicial meshes. Math. Model. Nat. Phenom. 5, 91–96 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Agouzal, A., Lipnikov, K., Vassilevski, Y.: On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes. Math. Comput. Simul. (in Press, 2011)Google Scholar
  6. 6.
    Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Inter. J. Numer. Meth. Engrg. 43, 1143–1165 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Buscaglia, G.C., Dari, D.A.: Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Eng. 40, 4119–4136 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Mathematics of Computation 76, 179–204 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland (1978)Google Scholar
  10. 10.
    Coupez, T.: Generation de maillage et adaptation de maillage par optimisation locale. Revue Europeenne Des Elements Finis 49, 403–423 (2000) (in French)Google Scholar
  11. 11.
    D’Azevedo, E.: Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Stat. Comput. 12, 755–786 (1991)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Farrell, P.E., Maddison, J.R.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Engrg. 200, 89–100 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fortin, M., Vallet, M.-G., Dompierre, J., Bourgault, Y., Habashi, W.G.: Anisotropic mesh adaptation: theory, validation and applications Computational Fluid dynamics, pp. 174–180. John Wiley & Sons Ltd (1996)Google Scholar
  14. 14.
    George, P.L.: Automatic mesh generation: Applications to Finite Element Methods. John Wiley & Sons, Inc., New York (1991)MATHGoogle Scholar
  15. 15.
    Huang, W., Sun, W.: Variational mesh adaptation II: Error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Loseille, A., Alauzet, F.: Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In: Clark, B.W. (ed.) Proc. of 18th Int. Meshing Roundtable, pp. 575–594 (2009)Google Scholar
  18. 18.
    Vassilevski, Y., Lipnikov, K.: Adaptive algorithm for generation of quasi-optimal meshes. Comp. Math. Math. Phys. 39, 1532–1551 (1999)Google Scholar
  19. 19.
    Vassilevski, Y., Agouzal, A.: An unified asymptotic analysis of interpolation errors for optimal meshes. Doklady Mathematics 72, 879–882 (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Agouzal
    • 1
  • K. Lipnikov
    • 2
  • Y. Vassilevski
    • 3
  1. 1.I.C.J. Universite Lyon1France
  2. 2.Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Institute of Numerical MathematicsMoscowRussia

Personalised recommendations