Advertisement

Stoffwechselerkrankungen

  • Burkhard Rodeck
  • René Santer
  • Nicole Muschol
  • Martin Burdelski
  • Michael Melter
  • Rainer Ganschow
  • Ulrich Baumann

Zusammenfassung

Entsprechend ihrer Wanderung bei isoelektrischer Fokussierung werden die allelen Varianten des α1-AT als Proteinaseinhibitorphänotypen (Pi) klassifiziert. Die dominierende Isoform ist der normale Phänotyp M, daneben gibt es die Mangelvarianten S und Z sowie eine 0-Variante.

Literatur

Literatur zu Abschn. 17.1

  1. Bals R (2010) Alpha-1-antitrypsin deficiency. Best Pract Res Clin Gastroenterol 24: 629–623PubMedGoogle Scholar
  2. Blank CA, Brantly M (1994) Clinical features and molecular characteristics of α1-antitrypsin deficiency. Ann Allergy 72: 105–121PubMedGoogle Scholar
  3. Chappell S, Hadzic N, Stockley R et al. (2008) A polymorphism of the alpha1-antitrypsin gene represents a risk factor for liver disease. Hepatology 47: 127–132PubMedGoogle Scholar
  4. Doherty DG, Donaldson PI, Whitehouse DB et al. (1990) HLA-phenotypes and gene polymorphisms in juvenile liver disase associated with α1-antitrypsin deficiency. Hepatology 12: 218–223PubMedGoogle Scholar
  5. Gadek JE, Hunninghake GW, Zimmerman RL, Crystal RG (1980) Regulation of release of alveolar macrophage-derived neutrophil chemotactic factor. Am Rev Respir Dis 121: 723–733PubMedGoogle Scholar
  6. Hunninghake GW, Gadek JE, Fales HM, Crystal RG (1980) Human alveolar macrophage-derived chemotactic factor for neutrophils: stimuli and partial characterization. J Clin Invest 66: 473–483PubMedGoogle Scholar
  7. Lai EC, Kao FF, Law ML, Woo SLC (1983) Assignment of the α1-antitrypsin gene and sequence-related gene to human chromosome 14 by molecular hybridization. Am J Hum Genet 35: 385–392PubMedGoogle Scholar
  8. Mowat AP (1994) Alpha1-antitrypsin deficiency (PiZZ): features of liver involvement in childhood. Acta Paediatr 393 (Suppl): 13–17Google Scholar
  9. Pan S, Huang L, McPherson J et al. (2009) Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology 50: 275–281PubMedGoogle Scholar
  10. Perlmutter DH (1991) The cellular basis for liver injury in α1-antitrypsin deficiency. Hepatology 13: 172–185PubMedGoogle Scholar
  11. Pittschieler K (1994) Heterozygotes and liver involvement. Acta Paediatr 393 (Suppl): 21–23Google Scholar
  12. Rabin M, Watson M, Kidd V et al. (1986) Regional location of α1 chymotrypsin and α1-antitrypsin genes on human chromosome 14. Somat Cell Mol Genet 12: 209–214PubMedGoogle Scholar
  13. Sifers RN, Finegold MJ, Wood SLC (1992) Molecular biology and genetics of α1-antitrypsin deficiency. Semin Liver Dis 12: 301–310PubMedGoogle Scholar
  14. Stockley RA, Parr DG, Piitulainen E et al. (2010) Therapeutic efficacy of α-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respir Res 11: 136PubMedGoogle Scholar
  15. Sveger T (1976) Liver disease in α1-antitrypsin deficiency detected by screening of 200.000 infants. N Engl J Med 294: 1316–1321PubMedGoogle Scholar
  16. Sveger T (1984) Prospective study of children with α1-antitrypsin deficiency. Eight-year-old follow up. J Pediatr 104: 91–94PubMedGoogle Scholar
  17. Sveger T (1988) The natural history of liver disease in α1-antitrypsin deficient children. Acta Pediatr Scand 77: 847–851Google Scholar
  18. Sveger T (1994) Screening for alpha1-antitrypsin deficiency. Acta Paediatr 393 (Suppl): 18–20Google Scholar
  19. Sveger T, Eriksson S (1995) The liver in adolescents with α1-antitrypsin deficiency. Hepatology 22: 514–517PubMedGoogle Scholar
  20. Sveger T, Thelin T (1981) Four-year-old children with α1-antitrypsin deficiency. Acta Pediatr Scand 70: 171–176Google Scholar
  21. Wu Y, Whitman I, Molmenti E et al. (1994) A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci USA 91: 9014–9018PubMedGoogle Scholar

Literatur zu Abschn. 17.2

  1. Berry GT, Segal S, Gitzelmann R (2011) Disorders of galactose metabolism. In: Fernandes J, Saudubray JM, Berghe G van den, Walter JH (eds) Inborn metabolic diseases: diagnosis and treatment, 5th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Bosch AM (2006) Classical galactosaemia revisited. J Inherit Metab Dis 29: 516–525PubMedGoogle Scholar
  3. Chen YT (2001) Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1521–1551Google Scholar
  4. Chou JY, Raben N (eds) (2002) Glycogen storage diseases. Curr Mol Med 2: 1–227Google Scholar
  5. Cox TM (2002) The genetic consequences of our sweet tooth. Nat Rev Genet 3: 481–487PubMedGoogle Scholar
  6. Franco LM, Krishnamurthy V, Bali D et al. (2005) Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. J Inherit Metab Dis 28: 153–162PubMedGoogle Scholar
  7. Bundesministerium für Gesundheit (2011) Bekanntmachung eines Beschlusses des Gemeinsamen Bundesausschusses über eine Änderung der Kinder-Richtlinien: Anpassung des erweiterten Neugeborenen-Screenings an das Gendiagnostikgesetz (GenDG) Bundesanzeiger 40: 1013. http://www.screening-dgns.de/PDF/Screeningrichtlinie_NGS_2011_BAnz.pdf. Zugegriffen: 18. April 2012Google Scholar
  8. Jaeken J, Matthijs G, Carchon H, Schaftingen E van (2004) Defects of N-glycan synthesis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1601–1623Google Scholar
  9. Kim SY, Jun HS, Mead PA, Mansfield BC, Chou JY (2008) Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111: 5704-5711PubMedGoogle Scholar
  10. Labrune P (2002) Glycogen storage disease type I: indications for liver and/or kidney transplantation. Eur J Pediatr 161 (Suppl 1): S53–S55Google Scholar
  11. Lee PJ (2002) Glycogen storage disease type I: pathophysiology of liver adenomas. Eur J Pediatr 161 (Suppl 1): S46–S49Google Scholar
  12. Matern D, Seydewitz HH, Bali D, Lang C, Chen YT (2002) Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr 161 (Suppl 1): S10–S99Google Scholar
  13. Morava E, Lefeber D (eds) (2011) CDG – an update. J Inherit Metab Dis 34: 847–939Google Scholar
  14. Panaro F, Andorno E, Basile G et al. (2004) Simultaneous liver-kidney transplantation for glycogen storage disease type IA (von Gierke’s disease). Transplant Proc 36: 1483–1484PubMedGoogle Scholar
  15. Rake JP, Visser G, Labrune P et al. (2002) Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 161 (Suppl 1): S20–S34Google Scholar
  16. Santer R, Rischewski J, Weihe von M et al. (2005) The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe. Hum Mutat 25: 594PubMedGoogle Scholar
  17. Schweitzer-Krantz S (2003) Early diagnosis of inherited metabolic disorders towards improving outcome: the controversial issue of galactosaemia. Eur J Pediatr 162 (Suppl 1): S50–S53Google Scholar
  18. Steinmann B, Santer R, Berghe G van den (2011) Disorders of fructose metabolism. In: Fernandes J, Saudubray JM, Berghe G van den, Walter JH (eds) Inborn metabolic diseases – diagnosis and treatment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Waisbren SE, Potter NL, Gordon CM et al. (2011) The adult galactosemic phenotype. J Inherit Metab Dis 34: 165–171Google Scholar

Literatur zu Abschn. 17.3

  1. Brewer GJ, Askari FK (2005) Wilson’s disease: clinical management and therapy. J Hepatol 42 (Suppl 1): S13–S21Google Scholar
  2. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5: 327–337PubMedGoogle Scholar
  3. Ferenci P, Caca K, Loudianos G et al. (2003) Diagnosis and phenotypic classification of Wilson disease. Liver Int 23: 139–142PubMedGoogle Scholar
  4. Lee VD, Northup PG, Berg CL (2006) Resolution of decompensated cirrhosis from Wilson’s disease with zinc monotherapy: a potential therapeutic option? Clin Gastroenterol Hepatol 4: 1069–1071PubMedGoogle Scholar
  5. Mueller T, Schafer H, Rodeck B et al. (1999) Familial clustering of infantile cirrhosis in Northern Germany: a clue to the etiology of idiopathic copper toxicosis. J Pediatr 135 (2 Pt 1): 189–196Google Scholar
  6. Nicastro E, Ranucci G, Vajro P, Vegnente A, Iorio R (2010) Re-evaluation of the diagnostic criteria for Wilson disease in children with mild liver disease. Hepatology 52: 1948–1956PubMedGoogle Scholar
  7. Sanchez-Albisua I, Garde T, Hierro L et al. (1999) A high index of suspicion: the key to an early diagnosis of Wilson’s disease in childhood. J Pediatr Gastroenterol Nutr 28: 186–190PubMedGoogle Scholar

Literatur zu Abschn. 17.4

  1. Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T (2002) Penetrance of 845G–A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359: 211–218PubMedGoogle Scholar
  2. Bridle KR, Frazer DM, Wilkins SJ et al. (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361: 669–673PubMedGoogle Scholar
  3. Fleming RE, Britton RS (2006) Iron imports. VI. HFE and regulation of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 290: G590–G594PubMedGoogle Scholar
  4. Franchini M, Veneri D (2005) Hereditary hemochromatosis. Hematology 10(2): 145–149PubMedGoogle Scholar
  5. Grabhorn E, Richter A, Burdelski M, Rogiers X, Ganschow R (2006) Neonatal hemochromatosis: long-term experience with favorable outcome. Pediatrics 118: 2060–2065PubMedGoogle Scholar
  6. Olynyk JK, Cullen DJ, Aquilia S et al. (1999) A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 341: 718–724PubMedGoogle Scholar
  7. Pan X, Kelly S, Melin-Aldana H, Malladi P, Whitington PF (2010) Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology 51: 2061–2068PubMedGoogle Scholar
  8. Rand EB, Karpen SJ, Kelly S et al. (2009) Treatment of neonatal hemochromatosis with exchange transfusion and intravenous immunoglobulin. J Pediatr 155: 566–567PubMedGoogle Scholar
  9. Rodrigues F, Kallas M, Nash R et al. (2005) Neonatal hemochromatosis – medical treatment vs. transplantation: the king‘s experience. Liver Transpl 11: 1417–1424PubMedGoogle Scholar
  10. Wallace DF, Subramaniam VN (2007) Non-HFE haemochromatosis. World J Gastroenterol 13: 4690–4698PubMedGoogle Scholar
  11. Whitington PF, Malladi P (2005) Neonatal hemochromatosis: is it an alloimmune disease? J Pediatr Gastroenterol Nutr 40: 544–549PubMedGoogle Scholar
  12. Wood MJ, Powell LW, Ramm GA (2008) Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 111: 4456–4462PubMedGoogle Scholar

Literatur zu Abschn. 17.5

  1. Ahmed I (2002) Childhood porphyrias. Mayo Clin Proc 77: 825–836PubMedGoogle Scholar
  2. Anderson KE, Bloomer JR, Bonkovsky HL et al. (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142: 439–450PubMedGoogle Scholar
  3. Kauppinen R (2005) Porphyrias. Lancet 365: 241–252PubMedGoogle Scholar

Literatur zu Abschn. 17.6

  1. Halvorsen S, Kvittingen EA, Flatmark A (1988) Outcome of therapy of hereditary tyrosinemia. Acta Paediatr Jpn 30: 425–428PubMedGoogle Scholar
  2. Harms E, Roscher A, Grueters A et al. (2002) Neue Screening-Richtlinien. Monatsschr Kinderheilkd 150: 1424–1440Google Scholar
  3. Kvittingen EA (1991) Tyrosinaemia type I – an update. J Inherit Metab Dis 14: 554–562PubMedGoogle Scholar
  4. Laberge C (1969) Hereditary tyrosinemia in a French Canadian isolate. Am J Hum Genet 21: 36–45PubMedGoogle Scholar
  5. Laberge C, Grenier A, Valet JP, Morissette J (1990) Fumarylacetoacetase measurement as a mass-screening procedure for hereditary tyrosinemia type I. Am J Hum Genet 47: 325–328PubMedGoogle Scholar
  6. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 74: 4641–4645PubMedGoogle Scholar
  7. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase [see comments]. Lancet 340: 813–817PubMedGoogle Scholar
  8. Mitchell G, Larochelle J, Lambert M et al. (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322: 432–437PubMedGoogle Scholar
  9. Mitchell GA, Lambert M, Tanguay RM (1995) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1077–1106Google Scholar
  10. Paradis K, Weber A, Seidman EG et al. (1990) Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet 47: 338–342PubMedGoogle Scholar
  11. Poudrier J, Lettre F, Scriver CR, Larochelle J, Tanguay RM (1998) Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab 64: 119–125PubMedGoogle Scholar
  12. Sima AA, Kennedy JC, Blakeslee D, Robertson DM (1981) Experimental porphyric neuropathy: a preliminary report. Can J Neurol Sci 8: 105–113PubMedGoogle Scholar

Literatur zu Abschn. 17.7

  1. Beck M (2001) Variable clinical presentation in lysosomal storage disorders. J Inherit Metab Dis 24 (Suppl 2): 47–51; discussion: 45–46Google Scholar
  2. Boelens JJ, Prasad VK, Tolar J, Wynn RF, Peters C (2010) Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr Clin North Am 57: 123-145PubMedGoogle Scholar
  3. Desnick RJ (2004) Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis 27: 385–410PubMedGoogle Scholar
  4. Ellinwood NM, Vite CH, Haskins ME (2004) Treatment of lysosomal storage disorders: cell therapy and gene therapy. J Inherit Metab Dis 27: 411–415Google Scholar
  5. Guo Y, He W, Boer AM et al. (1995) Elevated plasma chitotriosidase activity in various lysosomal storage disorders. J Inherit Metab Dis 18: 717–722PubMedGoogle Scholar
  6. Krivit W (2004) Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immunopathol 26: 119–132PubMedGoogle Scholar
  7. Malatack JJ, Consolini DM, Bayever E (2003) The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr Neurol 29: 391–403PubMedGoogle Scholar
  8. Marsden D, Levy H (2010) Newborn screening of lysosomal storage disorders. Clin Chem 56: 1071–1079PubMedGoogle Scholar
  9. Parkinson-Lawrence EJ, Shandala T, Prodoehl M et al. (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda). 25: 102–115Google Scholar
  10. Staretz-Chacham O, Lang TC, LaMarca ME, Krasnewich D, Sidransky E (2009) Lysosomal storage disorders in the newborn. Pediatrics 123: 1191–1207PubMedGoogle Scholar
  11. Vom Dahl S, Mengel E (2010) Lysosomal storage diseases as differential diagnosis of hepatosplenomegaly. Best Pract Res Clin Gastroenterol 24: 619–628PubMedGoogle Scholar
  12. Weibel TD, Brady RO (2001) Systematic approach to the diagnosis of lysosomal storage disorders. Ment Retard Dev Disabil Res Rev 7: 190–199PubMedGoogle Scholar
  13. Wenger DA, Coppola S, Liu SL (2003) Insights into the diagnosis and treatment of lysosomal storage diseases. Arch Neurol 60: 322–328PubMedGoogle Scholar

Literatur zu Abschn. 17.8

  1. Balistreri WF (1999) Inborn errors of bile acid biosynthesis and transport. Novel forms of metabolic liver disease. Gastroenterol Clin North Am 28: 145–172PubMedGoogle Scholar
  2. Bove KE, Heubi JU Balistreri WF, Setchel KD (2004) Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol 7: 315–334PubMedGoogle Scholar
  3. Clayton PT (2001) Applications of mass spectrometry in the study of inborn errors of metabolism. J Inh Metab Dis 24: 139–150Google Scholar
  4. Setchel KD, Heubi JU, Bove KE et al. (2003) Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124: 217–232Google Scholar
  5. Rand EB, Karpen SJ, Kelly S et al. (2009) Treatment of neonatal hemochromatosis with exchange transfusion and intravenous immunoglobulin. J Pediatr 155: 568–571Google Scholar
  6. Gonzales E, Gerhardt MF, Fabre M et al. (2009) Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long-term therapy. Gastroeneterolgy137: 1310–1320Google Scholar

Literatur zu Abschn. 17.9

  1. Arias IM (1962) Chronic unconjugated hyperbilirubinemia without overt signs of hemolysis in adolescents and adults. J Clin Invest 41: 2233–2245PubMedGoogle Scholar
  2. Bellodi-Privato M, Aubert D, Pichard V et al. (2005) Successful gene therapy of the Gunn rat by in vivo neonatal hepatic gene transfer using murine oncoretroviral vectors. Hepatology 42: 431–438PubMedGoogle Scholar
  3. Bosma PJ, Chowdhury JR, Bakker C et al. (1995) The genetic basis of the reduced expression of bilirubin UDP- glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 333: 1171–1175PubMedGoogle Scholar
  4. Clarenburg R, Kao CC (1973) Shared and separate pathways for biliary excretion of bilirubin and BSP in rats. Am J Physiol 225: 192–200PubMedGoogle Scholar
  5. Crigler JF Jr, Najjar VA (1952) Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 10: 169–180PubMedGoogle Scholar
  6. Dennery PA (2005) Metalloporphyrins for the treatment of neonatal jaundice. Curr Opin Pediatr 17: 167–169PubMedGoogle Scholar
  7. Dimmock D, Brunetti-Pierri N, Palmer DJ, Beaudet AL, Ng P (2011) Correction of hyperbilirubinemia in gunn rats using clinically relevant low doses of helper-dependent adenoviral vectors. Hum Gene Ther 22: 483–488PubMedGoogle Scholar
  8. Fox IJ, Chowdhury JR, Kaufman SS et al. (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338: 1422–1426PubMedGoogle Scholar
  9. Galbraith RA, Drummond GS, Kappas A (1992) Suppression of bilirubin production in the Crigler-Najjar type I syndrome: studies with the heme oxygenase inhibitor tin-mesoporphyrin. Pediatrics 89: 175–182PubMedGoogle Scholar
  10. Gallagher TF Jr, Mueller MN, Kappas A (1966) Estrogen pharmacology. IV. Studies of the structural basis for estrogen-induced impairment of liver function. Medicine (Baltimore) 45: 471–479Google Scholar
  11. Knoppke B, Vermehren J, Grothues D et al. (2011) Auxiliary liver transplantation in a child with Crigler-Najjar syndrome type I. Transpl Int 24: 40Google Scholar
  12. Kren BT, Parashar B, Bandyopadhyay P et al. (1999) Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci USA 96: 10349–10354PubMedGoogle Scholar
  13. Lysy PA, Najimi M, Stephenne X et al. (2008) Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives. World J Gastroenterol 14: 3464–3470PubMedGoogle Scholar
  14. Monaghan G, McLellan A, McGeehan A et al. (1999) Gilbert's syndrome is a contributory factor in prolonged unconjugated hyperbilirubinemia of the newborn. J Pediatr 134: 441–446PubMedGoogle Scholar
  15. Okolicsanyi L, Ghidini O, Orlando R et al. (1978) An evaluation of bilirubin kinetics with respect to the diagnosis of Gilbert's syndrome. Clin Sci Mol Med 54: 539–547PubMedGoogle Scholar
  16. Olsson R, Bliding A, Jagenburg R et al. (1988) Gilbert's syndrome – does it exist? A study of the prevalence of symptoms in Gilbert's syndrome. Acta Med Scand 224: 485–490PubMedGoogle Scholar
  17. Regev RH, Stolar O, Raz A, Dolfin T (2002) Treatment of severe cholestasis in neonatal Dubin-Johnson syndrome with ursodeoxycholic acid. J Perinat Med 30: 185–187PubMedGoogle Scholar
  18. Roberts RJ, Plaa GL (1967) Effect of phenobarbital on the excretion of an exogenous bilirubin load. Biochem Pharmacol 16: 827–835PubMedGoogle Scholar
  19. Shieh CC, Chang MH, Chen CL (1990) Dubin-Johnson syndrome presenting with neonatal cholestasis. Arch Dis Child 65: 898–899PubMedGoogle Scholar
  20. Sinaasappel M, Jansen PLM (1991) The differential diagnosis of Crigler-Najjar disease,types 1 and 2, by bile pigment analysis. Gastroenterol 100: 783–789Google Scholar
  21. Veere CN van der, Sinaasappel M, McDonagh AF et al. (1996) Current therapy for Crigler-Najjar Syndrome type 1:report of a world registry. Hepatology 24: 311–315PubMedGoogle Scholar
  22. Wada M, Toh S, Taniguchi K et al. (1998) Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet 7: 203–207PubMedGoogle Scholar
  23. Wegen P van der, Louwen R, Imam AM et al. (2006) Successful treatment of UGT1A1 deficiency in a rat model of Crigler-Najjar disease by intravenous administration of a liver-specific lentiviral vector. Mol Ther 13: 374–381PubMedGoogle Scholar

Literatur zu Abschn. 17.10

  1. DiMauro S (2004) Mitochondrial diseases. Biochim Biophys Acta 1658: 80–88PubMedGoogle Scholar
  2. D‘Souza GG, Weissig V (2004) Approaches to mitochondrial gene therapy. Curr Gene Ther 4: 317–328PubMedGoogle Scholar
  3. Ferrari G, Lamantea E, Donati A et al. (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gamma A. Brain 128: 723–731PubMedGoogle Scholar
  4. Mandel H, Szargel R, Labay V et al. (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29: 337–341PubMedGoogle Scholar
  5. Marriage B, Clandinin MT, Glerum DM (2003) Nutritional cofactor treatment in mitochondrial disorders. J Am Diet Assoc 103: 1029–1038PubMedGoogle Scholar
  6. Rogac M, Meznaric M, Zeviani M, Sperl W, Neubauer D (2011) Functional outcome of children with mitochondrial diseases. Pediatr Neurol 44: 340-346PubMedGoogle Scholar
  7. Smeitink JA (2003) Mitochondrial disorders: clinical presentation and diagnostic dilemmas. J Inherit Metab Dis 26: 199–207PubMedGoogle Scholar
  8. Sperl W, Freisinger P, Mayr H, Burgard P (2010) Diagnostik und Therapieansatze bei Mitochondriopathien im Kindes- und Jugendalter. http://www.awmf.org/uploads/tx_szleitlinien/. Zugegriffen: 19. April 2012Google Scholar
  9. Spinazzola A, Viscomi C, Fernandez-Vizarra E et al. (2006) MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 38: 570–575PubMedGoogle Scholar
  10. Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127: 2153–2172PubMedGoogle Scholar

Literatur zu Abschn. 17.11

  1. Bachmann C (2003) Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr 162: 410–416PubMedGoogle Scholar
  2. Bachmann C, Batshaw M, Hammond J, Tuchman M, Wilcken B (eds) (2004) New developments in urea cycle disorders. Mol Genet Metab 81 (Suppl 1): S3–S91Google Scholar
  3. Brusilow S, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1909–1963Google Scholar
  4. Häberle J, Lindner M, Boddaert N et al. (2012) Guideline for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis (in press)Google Scholar
  5. Häberle J (2011) Clinical practice: the management of hyperammonemia. Eur J Pediatr 170: 21–34PubMedGoogle Scholar
  6. Morioka D, Kasahara M, Takada Y et al. (2005) Current role of liver transplantation for the treatment of urea cycle disorders: a review of the worldwide English literature and 13 cases at Kyoto University. Liver Transpl 11: 1332–1342PubMedGoogle Scholar

Literatur zu Abschn. 17.12

  1. Belay ED, Bresee JS, Holman RC et al. (1997) Reye’s syndrome in the United States from 1981 through 1997. N Engl J Med 340: 1377–1382Google Scholar
  2. Bove KE, McAdams AJ, Partin JS, Hug G, Schubert WK (1975) The hepatic lesion in Reye’s syndrome. Gastroenterology 69: 685–697PubMedGoogle Scholar
  3. Brown JK, Imam H (1991) Interrelationship of liver and brain with special reference to Reye’s syndrome. J Inherit Metab Dis 14: 436–458PubMedGoogle Scholar
  4. Khuroo MoS, Khuroo MeS, Farahat KLC (2004) Molecular adsorbent recirculating system for acute and acute-on-chronic liver failure: A meta analysis. Liver Transplant 10: 1099–1106Google Scholar
  5. Martin SR, Atkison P, Anand R, Lindblad AS, SPLIT Research Group (2004) Studies of pediatric liver transplantation 2002: patient and graft survival and rejection in pediatric recipients of a first liver transplant in the United States and Canada. Pediatr Transplant 8: 273–283PubMedGoogle Scholar
  6. Pinsky PF, Hurwitz ES, Schonberger LB, Gumn WJ (1988) Reye’s syndrome and aspirin. Evidence for a dose-response effect. J Am Med Assoc 260: 657–661Google Scholar
  7. Reye RDK, Morgan G, Baral L (1963) Encephalopathy and fatty degeneration of the viscera. A disease entity in childhood. Lancet II: 749–751Google Scholar

Literatur zu Abschn. 17.13

  1. Chace DH, Kalas TA, Naylor EW (2003) Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 49: 1797–1817PubMedGoogle Scholar
  2. Ding Z, Harding CO, Thony B (2004) State-of-the-art 2003 on PKU gene therapy. Mol Genet Metab 81: 3–8PubMedGoogle Scholar
  3. Gregersen N, Bross P, Andresen BS (2004) Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. Eur J Biochem 271: 470–482PubMedGoogle Scholar
  4. Grosse SD, Khoury MJ, Greene CL, Crider KS, Pollitt RJ (2006) The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: an update. Genet Med 8: 205–212PubMedGoogle Scholar
  5. Muntau AC, Roschinger W, Habich M et al. (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347: 2122–2132PubMedGoogle Scholar
  6. Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2297–2326Google Scholar
  7. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1667–1724Google Scholar
  8. Spiekerkoetter U, Lindner M, Santer R et al (2009) Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 32: 488–497PubMedGoogle Scholar
  9. Spronsen FJ van, Huijbregts SC, Bosch AM, Leuzzi V (2011) Cognitive, neurophysiological, neurological and psychosocial outcomes in early-treated PKU-patients: a start toward standardized outcome measurement across development. Mol Genet Metab 104 (Suppl): S45–S51Google Scholar
  10. Wilcken B (2010) Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis 33: 501–506PubMedGoogle Scholar

Literatur zu Abschn. 17.14

  1. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S (2003) Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 98: 2485–2490PubMedGoogle Scholar
  2. Lavine JE, Schwimmer JB, Van Natta ML et al.; Nonalcoholic Steatohepatitis Clinical Research Network (2011) Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 305(16): 1659–1668PubMedGoogle Scholar
  3. Roberts EA (2002) Steatohepatitis in children. Best Pract Res Clin Gastroenterol 16: 749–765PubMedGoogle Scholar
  4. Schwimmer JB, Deutsch R, Rauch JB et al. (2003) Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J Pediatr 143: 500–505PubMedGoogle Scholar
  5. Vairo P, Lenta S, Socha P et al. (2012) Diagnosis of nonalcoholic fatty liver disease in children and adolescents: position paper of the ESPGHAN Hepatology Committee. J Pediatr Gastroenterol Nutr 54(4): 700–713Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Burkhard Rodeck
    • 1
  • René Santer
    • 2
  • Nicole Muschol
    • 3
  • Martin Burdelski
    • 4
  • Michael Melter
    • 5
  • Rainer Ganschow
    • 3
  • Ulrich Baumann
    • 6
  1. 1.Zentrum für Kinder- und JugendmedizinChristliches Kinderhospital OsnabrückOsnabrückDeutschland
  2. 2.Klinik und Poliklinik für Kinder- und JugendmedizinUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  3. 3.Pädiatrische Hepatologie und LebertransplantationUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  4. 4.Campus KielUniversitätsklinikum Schleswig-HolsteinKielDeutschland
  5. 5.Klinik und Poliklinik für Kinder- und JugendmedizinUniversitätsklinikum RegensburgRegensburgDeutschland
  6. 6.Pädiatrische Gastroenterologie, Hepatologie und LebertransplantationMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations