Mathematical Continuity in Dynamic Social Networks

  • John L. Pfaltz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6984)

Abstract

A rigorous concept of continuity for dynamic networks is developed. It is based on closed, rather than open, sets. It is local in nature, in that if the network change is discontinuous it will be so at a single point and the discontinuity will be apparent in that point’s immediate neighborhood. Necessary and sufficient criteria for continuity are provided when the change involves only the addition or deletion of individual nodes or connections (edges). Finally, we show that an effective network process to reduce large networks to their fundamental cycles is continuous.

Keywords

Undirected Graph Closure Operator Neighborhood Closure Neighborhood System Continuous Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agnarsson, G., Greenlaw, R.: Graph Theory: Modeling, Applications and Algorithms. Prentice Hall, Upper Saddle River (2007)MATHGoogle Scholar
  2. 2.
    Ando, K.: Extreme point axioms for closure spaces. Discrete Mathematics 306, 3181–3188 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Behzad, M., Chartrand, G.: Introduction to the Theory of Graphs. Allyn and Bacon, Boston (1971)MATHGoogle Scholar
  4. 4.
    Bourqui, R., Gilbert, F., Simonetto, P., Zaidi, F., Sharan, U., Jourdan, F.: Detecting structural changes and command hierarchies in dynamic social networks. In: 2009 Advances in Social Network Analysis and Mining, Athens, Greece, pp. 83–88 (2009)Google Scholar
  5. 5.
    Christakis, N.A., Fowler, J.H.: Connected, The surprising Power of Our Social Networks and How They Shape Our Lives. Little Brown & Co., New York (2009)Google Scholar
  6. 6.
    Edelman, P.H., Jamison, R.E.: The Theory of Convex Geometries. Geometriae Dedicata 19(3), 247–270 (1985)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Giblin, P.J.: Graphs, Surfaces and Homology. Chapman and Hall, London (1977)MATHGoogle Scholar
  8. 8.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)MATHGoogle Scholar
  9. 9.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs, Advanced Topics. Marcel Dekker, New York (1998)MATHGoogle Scholar
  10. 10.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)MATHGoogle Scholar
  11. 11.
    Jankovic, D., Hamlett, T.R.: New Topologies from Old via Ideals. Amer. Math. Monthly 97(4), 295–310 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koshevoy, G.A.: Choice functions and abstract convex geometries. Mathematical Social Sciences 38(1), 35–44 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical Properties of Community structure in Large Social and Information Networks. In: WWW 2008, Proc. of 17th International Conf. on the World Wide Web, pp. 695–704 (2008)Google Scholar
  14. 14.
    McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Math., Philadelphia (1999)Google Scholar
  15. 15.
    Monjardet, B.: Closure operators and choice operators: a survey. In: Fifth Intern. Conf. on Concept Lattices and their Applications, Montpellier, France (October 2007); Lecture notesGoogle Scholar
  16. 16.
    Monjardet, B., Raderinirina, V.: The duality between the antiexchange closure operators and the path independent choice operators on a finite set. Math. Social Sciences 41(2), 131–150 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(036104), 1–22 (2006)MathSciNetGoogle Scholar
  19. 19.
    Ore, O.: Mappings of Closure Relations. Annals of Math. 47(1), 56–72 (1946)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pfaltz, J.L.: Closure Lattices. Discrete Mathematics 154, 217–236 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pfaltz, J.L.: A Category of Discrete Partially Ordered Sets. In: Agnarsson, G., Shapiro, J. (eds.) Mid-Atlantic Algebra Conf. George Mason Univ., Fairfax (2004)Google Scholar
  22. 22.
    Pfaltz, J.L.: Logical Implication and Causal Dependency. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 145–157. Springer, Heidelberg (2006)Google Scholar
  23. 23.
    Pfaltz, J.L.: Establishing Logical Rules from Empirical Data. Intern. Journal on Artificial Intelligence Tools 17(5), 985–1001 (2008)CrossRefGoogle Scholar
  24. 24.
    Pfaltz, J.L., Šlapal, J.: Neighborhood Transformations. In: 40th Southeastern International Conf. on Combinatorics, Graph Theory and Computing, Boca Raton, FL (March 2009)Google Scholar
  25. 25.
    Richards, W., Seary, A.: Eigen Analysis of Networks. J. of Social Structure 1(2), 1–16 (2000)Google Scholar
  26. 26.
    Royden, H.L.: Real Analysis. Mcmillian, New York (1988)MATHGoogle Scholar
  27. 27.
    Saito, A. (ed.): Graphs and Combinatorics. Springer, Heidelberg (2010) ISSN 0911-0119Google Scholar
  28. 28.
    Smyth, P.: Statistical Modeling of Graph and Network Data. In: Proc. IJCAI Workshop on Learning Statistical Models from Relational Data, Acapulco, Mexico (August 2003)Google Scholar
  29. 29.
    Šlapal, J.: A Galois Correspondence for Digital Topology. In: Denecke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, pp. 413–424. Kluwer Academic, Dordrecht (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • John L. Pfaltz
    • 1
  1. 1.Dept. of Computer ScienceUniversity of VirginiaUSA

Personalised recommendations