Cognition or Affect? - Exploring Information Processing on Facebook

  • Ksenia Koroleva
  • Hanna Krasnova
  • Oliver Günther
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6984)


Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.


information processing cognitive heuristics attitude cognitive and affective dimensions social networking sites Facebook 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajzen, I.: Nature and Operation of Attitudes. Annual Review of Psychology 52, 27–58 (2001)CrossRefGoogle Scholar
  2. 2.
    Ajzen, I., Sexton, J.: Depth of processing, belief congruence, and attitude-behavior correspondence. In: Chaiken, S., Trope, Y. (eds.) Dual-Process Theories in Social Psychology. The Guilford Press, New York (1999)Google Scholar
  3. 3.
    Chaiken, S.: Heuristic Versus Systematic Information Processing and the Use of Source Versus Message Cues in Persuation. Journal of Personality and Social Psychology 39(5), 752–766 (1980)CrossRefGoogle Scholar
  4. 4.
    Chaiken, S., Liberman, A., Eagly, A.H.: Heuristic and systematic processing within and beyond persuasion context. In: Uleman, J.S., Bargh, J.A. (eds.) Unintended Thought. The Guilford Press, New York (1989)Google Scholar
  5. 5.
    Chen, Y., Shang, R.-A., Kao, C.-Y.: The effects of Information Overload on consumers’ subjective state towards buying decision in the Internet shopping environment. Electronic Commerce Research and Applications 8, 48–58 (2009)CrossRefGoogle Scholar
  6. 6.
    Chin, W.W.: The Partial Least Squares Approach to Structural Equation Modeling. In: Marcoulides, G.A. (ed.) Proceedings of Modern Methods for Business Research, pp. 295–336. Lawrence Erlbaum Associates, Mahwah (1998)Google Scholar
  7. 7.
    Crites, S.L., Fabriger, L.R., Petty, R.E.: Measuring the Affective and Cognitive Properties of Attitudes: Conceptual and Methodological Issues. Personality and Social Psychology Bulletin 20(6), 619–634 (1994)CrossRefGoogle Scholar
  8. 8.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance. MIS Quaterly 13, 319–322 (1989)CrossRefGoogle Scholar
  9. 9.
    Davis, J.G., Ganeshan, S.: Aversion to Loss and Information Overload: An Experimental Investigation. In: International Conference of Information Systems Proceedings, paper 11 (2009)Google Scholar
  10. 10.
    Ellison, N.B., Steinfield, C., Lampe, C.: The benefits of Facebook “Friends”: Social Capital and College Students’ Use of Online Social Network Sites. Journal of Computer-Mediated Communication 12(4), article 1 (2007)Google Scholar
  11. 11.
    Eppler, M.J., Mengis, J.: The Concept of Information Overload: A Review of Literature from Organization Science, Markeing, Accounting, MIS and related Disciplines. The Information Society: An International Journal 20(5), 1–20 (2004)CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Fishbein, M., Ajzen, L.: Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley, Reading (1975)Google Scholar
  15. 15.
    Fornell, C.G., Larcker, D.F.: Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research 18(3), 39–50 (1981)CrossRefGoogle Scholar
  16. 16.
    Friedman, H.H., Amoo, T.: Rating the rating scales. Journal of Marketing Management 9(3), 114–123 (1999)Google Scholar
  17. 17.
    Hansman, K.W., Ringle, C.M.: Strategische Erfolgswirkung einer Teilnahme an Unternehmensnetzwerken: eine Empirische Untersuchung. Die Unternehmung 59(3), 217–236 (2005)Google Scholar
  18. 18.
    Henseler, J., Ringle, C., Sinkovics, R.: The Use of Partial Least Squares Modeling. Advances in International Marketing 20, 277–319 (2009)Google Scholar
  19. 19.
    Hu, P.J., Chau, P.Y.K., Sheng, O.R.L., Tam, K.Y.: Examining the Technology-Acceptance model using physical acceptance of Telemedicine Technology. Journal of Management Information Systems 16(2), 91–112 (1999)CrossRefGoogle Scholar
  20. 20.
    Homburg, C., Baumgartner, H.: Beurteilung von Kausalmodellen – Bestands-aufnahme und Anwendungsempfehlungen. Marketing ZFP 17(3), 162–176 (1995)Google Scholar
  21. 21.
    Hulland, J.: Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management J. 20, 195–204 (1999)CrossRefGoogle Scholar
  22. 22.
    Inside Facebook: Facebook’s June 2010 US Traffic by Age and Sex: Users Aged 18-44 Take a Growth Break,
  23. 23.
    Jones, Q., Ravid, G., Rafaeli, S.: Information Overload and Message Dynamics of Online Interaction Spaces: A Theoretical Model and Empirical Exploration. Information Systems Research 15(2), 194–210 (2004)CrossRefGoogle Scholar
  24. 24.
    Jones, Q., Moldovan, M., Raban, D., Butler, B.: Empirical Evidence of Information Overload Constraining Chat Channel Community Interactions. In: Proceedings of the CSCW, San Diego, California (2008)Google Scholar
  25. 25.
    Köbler, F., Riedl, C., Vetter, C., Leimeister, J.M., Krcmar, H.: Social Connectedness on Facebook – An Explorative Study on Status Message Usage. In: Proceedings of the Sixteenth Americas Conference on Information Systems, paper 247 (2010)Google Scholar
  26. 26.
    Koroleva, K., Krasnova, H., Günther, O.: ‘STOP SPAMMING ME!’ – Exploring information overload on Facebook. In: Proceedings of the Sixteenth Americas Conference on Information Systems, paper 447 (2010)Google Scholar
  27. 27.
    Krasnova, H., Kolesnikova, E., Günther, O.: It Won’t Happen To Me!: Self-Disclosure in Online Social Networks. In: Proceedings of the 15th Americas Conference on Information Systems, San Francisco, USA, paper 343 (2009)Google Scholar
  28. 28.
    Krosnick, J.A., Boninger, D.S., Chuang, Y.C., Berent, M.K., Garnot, C.G.: Attitude Strength: one construct or many related constructs? Journal of Personality and Social Psychology 65(6), 1132–1151 (1993)CrossRefGoogle Scholar
  29. 29.
    Moore, G.C., Benbasat, I.: Integrating Diffusion of Innovations and Theory of Reasoned Action models to predict utilization of information technology by end-users. In: Kautzand, K., Pries-Hege, G. (eds.) Diffusion and Adoption of Information Technology, pp. 132–146. Chapman and Hall, London (1996)CrossRefGoogle Scholar
  30. 30.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their Social Networks and Why? A Survey Study of Status Message Q&A behaviour. In: Proceedings of CHI, Atlanta, Georgia, USA (2010)Google Scholar
  31. 31.
    Ringle, C.M., Wende, S., Will, A.: SmartPLS, Release 2.0.M3. University of Hamburg, Hamburg (2005), (2009)
  32. 32.
    Schneider, S.C.: Information Overload: causes and consequences. Human Systems Management 7, 143–153 (1987)Google Scholar
  33. 33.
  34. 34.
    Voss, K.E., Spangerberg, E.R., Grohmann, B.: Measuring the hedonic and utilitarian dimensions of consumer attitude. Journal of Marketing Research 40(3) (2003)Google Scholar
  35. 35.
    Yang, H., Yoo, Y.: It’s all about attitude: revisiting the technology acceptance model. Journal of Decision Support Systems 38(1) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ksenia Koroleva
    • 1
  • Hanna Krasnova
    • 1
  • Oliver Günther
    • 1
  1. 1.Institute of Information SystemsHumboldt-University BerlinBerlinGermany

Personalised recommendations