A Spectral Analysis Approach for Social Media Community Detection

  • Xuning Tang
  • Christopher C. Yang
  • Xiajing Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6984)

Abstract

Online forums are ideal platforms for worldwide Internet users to share ideas, raise discussions and disseminate information. It is of great interest to gain a better understanding on the dynamic of user interactions and identify user communities in online forums. In this paper, we propose a temporal coherence analysis approach to detect user communities in online forum. Users are represented by vectors of activeness and communities are extracted by a soft community detection algorithm with the support of spectral analysis.

Keywords

Spectral Analysis Community Detection Soft Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space models. SIGKDD Explor. Newsl. 7, 31–40 (2005)CrossRefGoogle Scholar
  2. 2.
    Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 687–696. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Toyoda, M., Kitsuregawa, M.: Extracting evolution of web communities from a series of web archives. In: Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia, pp. 28–37. ACM, Nottingham (2003)CrossRefGoogle Scholar
  4. 4.
    Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 913–921. ACM, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Falkowski, T., Bartelheimer, J., Spiliopoulou, M.: Mining and Visualizing the Evolution of Subgroups in Social Networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 52–58. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Aggarwal, C., Yu, P.: Online analysis of community evolution in data streams. In: Proceedings of the SIAM International Conference on Data Mining (SDM 2005), pp. 56–67 (2005)Google Scholar
  8. 8.
    He, Q., Chang, K., Lim, E.: Analyzing feature trajectories for event detection. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 207–214. ACM, New York (2007)Google Scholar
  9. 9.
    Chien, S., Immorlica, N.: Semantic similarity between search engine queries using temporal correlation. In: Proceedings of the 14th International Conference on World Wide Web, pp. 2–11. ACM, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  11. 11.
    Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xuning Tang
    • 1
  • Christopher C. Yang
    • 1
  • Xiajing Gong
    • 2
  1. 1.College of Information Science and TechnologyDrexel UniversityPhiladelphiaUSA
  2. 2.School of Biomedical EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations