Comparing Linkage Graph and Activity Graph of Online Social Networks

  • Yuan Yao
  • Jiufeng Zhou
  • Lixin Han
  • Feng Xu
  • Jian Lü
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6984)


In the context of online social networks, the linkage graph—a graph composed of social links—has been studied for several years, while researchers have recently suggested studying the activity graph of real user interactions. Understanding these two types of graphs is important since different online applications might rely on different underlying structures. In this paper, we first analyze two specific online social networks, one of which stands for a linkage graph and the other for an activity graph. Based on our analysis, we find that the two networks exhibit several static and dynamic properties in common, but show significant difference in degree correlation. This property of degree correlation is further confirmed as a key distinction between these two types of graphs. To further understand this difference, we propose a network generator which could as well capture the other examined properties. Finally, we provide some potential implications of our findings and generator.


Linkage Graph Activity Graph Online Social Networks Degree Correlation Network Generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, Y.Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 835–844. ACM, New York (2007)Google Scholar
  2. 2.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cha, M., Mislove, A., Adams, B., Gummadi, K.P.: Characterizing social cascades in flickr. In: Proceedings of the First Workshop on Online Social Networks, WOSP 2008, pp. 13–18. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 721–730. ACM, New York (2009)Google Scholar
  5. 5.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38 (2006)Google Scholar
  6. 6.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51, 661–703 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Garriss, S., Kaminsky, M., Freedman, M.J., Karp, B., Mazières, D., Yu, H.: RE: reliable email. In: Proceedings of the 3rd Conference on Networked Systems Design & Implementation, NSDI 2006, vol. 3, pp. 297–310. USENIX Association, Berkeley (2006)Google Scholar
  8. 8.
    Golbeck, J., Hendler, J.: Inferring binary trust relationships in Web-based social networks. ACM Transaction on Internet Technology 6, 497–529 (2006)CrossRefGoogle Scholar
  9. 9.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM, New York (2006)Google Scholar
  11. 11.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 177–187. ACM, New York (2005)Google Scholar
  12. 12.
    Liu, G., Wang, Y., Orgun, M.A.: Optimal social trust path selection in complex social networks. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1391–1398 (2010)Google Scholar
  13. 13.
    Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In: Chung, S. (ed.) OTM 2004. LNCS, vol. 3290, pp. 492–508. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the Flickr social network. In: Proceedings of the First Workshop on Online Social Networks, WOSP 2008, pp. 25–30. ACM, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 29–42. ACM, New York (2007)Google Scholar
  16. 16.
    Mislove, A., Post, A., Druschel, P., Gummadi, K.P.: Ostra: leveraging trust to thwart unwanted communication. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2008, pp. 15–30. USENIX Association, Berkeley (2008)Google Scholar
  17. 17.
    Newman, M.: Mixing patterns in networks. Physical Review E 67(2), 026126 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pujol, J.M., Sangüesa, R., Delgado, J.: Extracting reputation in multi agent systems by means of social network topology. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2002, pp. 467–474. ACM, New York (2002)CrossRefGoogle Scholar
  20. 20.
    Tauro, S., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for the Internet topology. In: Global Telecommunications Conference, GLOBECOM 2001, vol. 3, pp. 1667–1671. IEEE, Los Alamitos (2001)Google Scholar
  21. 21.
    Tran, T., Rowe, J., Wu, S.F.: Social email: A framework and application for more socially-aware communications. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 203–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, WOSN 2009, pp. 37–42. ACM, New York (2009)Google Scholar
  23. 23.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, pp. 205–218. ACM, New York (2009)Google Scholar
  25. 25.
    Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: SybilGuard: defending against Sybil attacks via social networks. In: Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2006, pp. 267–278. ACM, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuan Yao
    • 1
    • 2
  • Jiufeng Zhou
    • 3
  • Lixin Han
    • 3
  • Feng Xu
    • 1
    • 2
  • Jian Lü
    • 1
    • 2
  1. 1.State Key Laboratory for Novel Software TechnologyNanjingChina
  2. 2.Department of Computer Science and TechnologyNanjing UniversityChina
  3. 3.Department of Computer Science and TechnologyHoHai UniversityChina

Personalised recommendations