Linear and Non-linear Inverse Pyramidal Image Representation: Algorithms and Applications

  • Roumen KountchevEmail author
  • Vladimir Todorov
  • Roumiana Kountcheva
Part of the Intelligent Systems Reference Library book series (ISRL, volume 29)


In the chapter is presented one specific approach for image representation, known as Inverse Pyramid Decomposition (IPD), and its main applications. The chapter is arranged as follows: the Introduction reviews the state of the art, comprising the presentation of various pyramidal decompositions and outlining their advantages and demerits. In the next sections are considered in detail the principles of the IPD based on linear (DFT, DCT, WHT, KLT, etc.) and non-linear transforms: deterministic, based on oriented surfaces, and adaptive, based on pyramidal neural networks. Furthermore, the work introduces the non-recursive and recursive implementations of the IPD. Special attention is paid to the main application areas of the IPD: the image compression (lossless, visually lossless and lossy), the multi-view and the multispectral image representation. Significant part of the chapter is devoted to the evaluation and comparison of the new representation with the famous compression standards JPEG and JPEG2000. In the conclusion are outlined the main advantages of the IPD and the trends for future development and investigations.


pyramidal image decomposition reduced inverse spectrum pyramid pyramidal neural network multi-view image representation multispectral images compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, T., Tsai, P.: JPEG 2000 Standard for Image Compression. John Wiley and Sons (2005)Google Scholar
  2. Ahmed, N., Rao, K.: Orthogonal transforms for digital signal processing. Springer, New York (1975)zbMATHGoogle Scholar
  3. Aiazzi, B., Alparone, L., Baronti, S.: A reduced Laplacian pyramid for lossless and progressive image communication. IEEE Trans. on Communication 44(1), 18–22 (1996)zbMATHCrossRefGoogle Scholar
  4. Aiazzi, B., Alparone, L., Baronti, S.: A reduced Laplacian pyramid for lossless and progressive image communication. IEEE Trans. on Commun. 44(1), 18–22 (1996)zbMATHCrossRefGoogle Scholar
  5. Aiazzi, B., Alparone, L., Baronti, B., Lotti, F.: Lossless image compression by quantization feedback in Content-Driven enhanced Laplacian pyramid. IEEE Trans. Image Processing 6, 831–844 (1997)CrossRefGoogle Scholar
  6. Aiazzi, B., Baronti, S., Lastri, C.: Remote sensing image coding. In: Barni, M. (ed.) Document and Image Compression, ch. 15, pp. 389–412. CRC Taylor&Francis (2006)Google Scholar
  7. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Processing 1, 205–220 (1992)CrossRefGoogle Scholar
  8. Boliek, M., Gormish, M., Schwartz, E., Keith, A.: A next generation image compression and manipulation using CREW. In: Proc. IEEE ICIP (1997)Google Scholar
  9. Bovik, A.: Multiscale image decomposition and wavelets. In: The Essential Guide to Image Processing, pp. 123–142. Academic Press, NY (2009)Google Scholar
  10. Brigger, P., Muller, F., Illgner, K., Unser, M.: Centered pyramids. IEEE Trans. on Image Processing 8(9), 1254–1264 (1999)CrossRefGoogle Scholar
  11. Bronshtein, I., Semendyayev, K., Musiol, G., Muehlig, H.: Handbook of mathematics, 5th edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  12. Buccigrossi, R., Simoncelli, E.: Image compression via joint statistical characterization in the wavelet domain. GRASP Laboratory Technical Report No 414, pp. 1–23. University of Pennsylvania (1997)Google Scholar
  13. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. on Comm., COM 31(4), 532–540 (1983)CrossRefGoogle Scholar
  14. Cagnazzo, M., Parrilli, S., Poggi, G., Verdoliva, L.: Improved class-based coding of multispectral images with shape-adaptive wavelet transform. IEEE Geoscience and Remote Sensing Letters 4(4), 565–570 (2007)CrossRefGoogle Scholar
  15. Chen, C.: Laplacian pyramid image data compression. In: IEEE IC on ASSP, vol. 2, pp. 737–739 (1987)Google Scholar
  16. Chen, T., Wu, H.: Artifact reduction by post-processing in image compression. In: Wu, H., Rao, K. (eds.) Digital Video Image Quality and Perceptual Coding, ch. 15. CRC Press, Taylor and Francis Group, LLC, Boca Raton (2006)Google Scholar
  17. Cherkashyn, V., He, D., Kountchev, R.: A novel adaptive representation method AIPR/BPNN of satellite visible very high definition images. Journal of Communication and Computer 7(9), 55–66 (2010)Google Scholar
  18. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)zbMATHCrossRefGoogle Scholar
  19. Deforges, O., Babel, M., Bedat, L., Ronsin, J.: Color LAR codec: a color image representation and compression scheme based on local resolution adjustment and self-extracting region representation. IEEE Trans. on Circuits and Systems for Video Technology 17(8), 974–987 (2007)CrossRefGoogle Scholar
  20. Demaistre, N., Labit, C.: Progressive image transmission using wavelet packets. In: Proc. ICIP 1996, pp. 953–956 (1996)Google Scholar
  21. DeVore, R., Jarwerth, B., Lucier, B.: Image compression through wavelet transform coding. IEEE Trans. Information Theory 38, 719–746 (1992)zbMATHCrossRefGoogle Scholar
  22. Do, M., Vetterli, M.: Contourlets. In: Welland, G. (ed.) Beyond wavelets. Academic Press, NY (2003)Google Scholar
  23. Dony, R., Haykin, S.: Neural network approaches to image compression. Proc. of the IEEE 23(2), 289–303 (1995)Google Scholar
  24. Dragotti, P., Poggi, G., Ragozini, A.: Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans. Geosci. Remote Sens. 38(1), 416–428 (2000)CrossRefGoogle Scholar
  25. Efstratiadis, S., Tzovaras, D., Strintzis, M.: Hierarchical image compression using partition priority and multiple distribution entropy coding. IEEE Trans. Image Processing 5, 1111–1124 (1996)CrossRefGoogle Scholar
  26. Egger, O., Fleury, P., Ebrahimi, T.: High-performance compression of visual information-A tutorial review-Part I: Still Pictures. Processing of the IEEE 87(6), 976–1011 (1999)CrossRefGoogle Scholar
  27. Fowler, J., Fox, D.: Embedded wavelet-based coding of 3D oceanographic images with land masses. IEEE Trans. Geosci. Remote Sens. 39(2), 284–290 (2001)CrossRefGoogle Scholar
  28. Froment, J., Mallat, S.: Second generation image coding with wavelets. In: Chui, C. (ed.) Wavelets: A Tutorial in Theory and Applications, vol. 2. Acad. Press, NY (1992)Google Scholar
  29. Gelli, G., Poggi, G.: Compression of multispectral images by spectral classification and transform coding. IEEE Trans. Image Processing 8(4), 476–489 (1999)CrossRefGoogle Scholar
  30. Gersho, A., Gray, R.: Vector quantization and signal compression. Kluwer AP (1992)Google Scholar
  31. Gonzalez, R., Woods, R.: Digital image processing. Prentice-Hall (2001)Google Scholar
  32. Gibson, J., Berger, T., Lookabaugh, T., Lindberg, D., Baker, R.: Digital compression for multimedia. Morgan Kaufmann (1998)Google Scholar
  33. Hu, Y., Hwang, J.: Handbook of neural network signal processing. CRC Press, LLC (2002)Google Scholar
  34. ISO/IEC JTC1/SC29/Wg11 m12542: Multi-view video coding based on lattice-like pyramid GOP structure (2005)Google Scholar
  35. Jiang, J.: Image compressing with neural networks - A survey. In: Signal Processing: Image Communication, vol. 14(9), pp. 737–760. Elsevier (1999)Google Scholar
  36. Joshi, R., Ficher, T., Bamberger, R.: Comparison of different methods of classification in subband coding of images. In: Proc. SPIE Still Image Compression, vol. 2418, pp. 154–163 (1995)Google Scholar
  37. Jung, H., Choi, T., Prost, R.: Rounding transform for lossless image coding. In: Proc. IC for Image Processing 1996, pp. 65–68 (1996)Google Scholar
  38. Kaarna, A.: Integer PCA and wavelet transform for lossless compression of multispectral images. In: Proc. of IGARSS 2001, pp. 1853–1855 (2001)Google Scholar
  39. Kalra, K.: Image Compression Graphical User Interface, Karmaa Lab, Indian Institute of Technology, Kanpur,
  40. Kim, W., Balsara, P., Harper, D., Park, J.: Hierarchy embedded differential image for progressive transmission using lossless compression. IEEE Trans. on Circuits and Systems for Video Techn. 5(1), 2–13 (1995)Google Scholar
  41. Kim, H., Li, C.: Lossless and lossy image compression using biorthogonal wavelet transforms with multiplierless operations. IEEE Trans. on CAS-II. Analog and Digital Signal Processing 45(8), 1113–1118 (1998)zbMATHCrossRefGoogle Scholar
  42. Kim, S., Lee, S., Ho, Y.: Three-dimensional natural video system based on layered representation of depth maps. IEEE Trans. on Consumer Electronics 52(3), 1035–1042 (2006)CrossRefGoogle Scholar
  43. Knowlton, K.: Progressive transmission of gray scale and binary pictures by simple, efficient and lossless encoding scheme. Proc. IEEE 68, 885–896 (1980)CrossRefGoogle Scholar
  44. Kong, X., Goutsias, J.: A study of pyramidal techniques for image representation and compression. Journal of Visual Communication and Image Representation 5(2), 190–203 (1994)CrossRefGoogle Scholar
  45. Kouda, N., et al.: Image compression by layered quantum neural networks. Neural Processing Lett. 16, 67–80 (2002)zbMATHCrossRefGoogle Scholar
  46. Kountchev, R., Haese-Coat, V., Ronsin, J.: Inverse pyramidal decomposition with multiple DCT. In: Signal Processing: Image Communication, vol. 17(2), pp. 201–218. Elsevier (2002)Google Scholar
  47. Kountchev, R., Milanova, M., Ford, C., Kountcheva, R.: Multi-layer image transmission with inverse pyramidal decomposition. In: Halgamuge, S., Wang, L. (eds.) Computational Intelligence for Modeling and Predictions, vol. 2(13). Springer, Heidelberg (2005)Google Scholar
  48. Kountchev, R., Kountcheva, R.: Image representation with reduced spectrum pyramid. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia, pp. 275–284. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. Kountchev, R., Kountcheva, R.: Comparison of the structures of the inverse difference and Laplacian pyramids for image decomposition. In: XLV Intern. Scientific Conf. on Information, Communication and Energy Systems and Technologies, pp. 33–36. SPI, Macedonia (2010)Google Scholar
  50. Kountchev, R., Nakamatsu, K.: Compression of multispectral images with inverse pyramid decomposition. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6278, pp. 215–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  51. Kountchev, R., Rubin, S., Milanova, M., Todorov, V.l., Kountcheva, R.: Non-linear Image representation based on IDP with NN. WSEAS Trans. on Signal Processing 9(5), 315–325 (2009)Google Scholar
  52. Kountchev, R., Todorov, V.l., Kountcheva, R.: Multi-view Object Representation with inverse difference pyramid decomposition. WSEAS Trans. on Signal Processing 9(5), 315–325 (2009)Google Scholar
  53. Kountchev, R., Todorov, V.l., Kountcheva, R.: RSCT-invariant object representation with modified Mellin-Fourier transform. WSEAS Trans. on Signal Processing 4(6), 196–207 (2010)Google Scholar
  54. Kropatsch, W., Bischof, H. (eds.): Digital image analysis: selected techniques and applications. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  55. Kulkarni, S., Verma, B., Blumenstein, M.: Image compression using a direct solution method based on neural network. In: The 10th Australian Joint Conference on Artificial Intelligence, Perth, Australia, pp. 114–119 (1997)Google Scholar
  56. Kunt, M., Ikonomopoulos, A., Kocher, M.: Second-generation image-coding technique. Proc. of IEEE 73(4), 549–574 (1985)CrossRefGoogle Scholar
  57. Lu, C., Chen, A., Wen, K.: Polynomial approximation coding for progressive image transmission. Journal of Visual Communication and Image Representation 8, 317–324 (1997)CrossRefGoogle Scholar
  58. Malo, J., Epifanio, I., Navarro, R., Simoncelli, E.: Nonlinear image representation for efficient perceptual coding. IEEE Trans. on Image Processing 15(1), 68–80 (2006)CrossRefGoogle Scholar
  59. Majani, E.: Biorthogonal wavelets for image compression. In: Proc. SPIE Visual Commun. Image Process. Conf., Chicago, IL, pp. 478–488 (1994)Google Scholar
  60. Mallat, S.: A theory for multiresolution signal decomposition: the Wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-II,  7, 674–693 (1989)Google Scholar
  61. Mallat, S.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. ASSP 37, 2091–2110 (1990)CrossRefGoogle Scholar
  62. Mancas, M., Gosselin, B., Macq, B.: Perceptual image representation. EURASIP Journal on Image and Video Processing, 1–9 (2007)Google Scholar
  63. Markas, T., Reif, J.: Multispectral image compression algorithms. In: Storer, J., Cohn, M. (eds.), pp. 391–400. IEEE Computer Society Press (1993)Google Scholar
  64. Meer, P.: Stochastic image pyramids. In: Computer Vision, Graphics and Image Processing, vol. 45, pp. 269–294 (1989)Google Scholar
  65. Milanova, M., Kountchev, R., Rubin, S., Todorov, V., Kountcheva, R.: Content Based Image Retrieval Using Adaptive Inverse Pyramid Representation. In: Salvendy, G., Smith, M.J. (eds.) HCI International 2009. LNCS, vol. 5618, pp. 304–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  66. Mokhtarian, F., Abbasi, S.: Automatic selection of optimal views in multi-view object recognition. In: British Machine Vision Conf., pp. 272–281 (2000)Google Scholar
  67. Mongatti, G., Alparone, L., Benelli, G., Baronti, S., Lotti, F., Casini, A.: Progressive image transmission by content driven Laplacian pyramid encoding. IEE Processings-1 139(5), 495–500 (1992)Google Scholar
  68. Muller, F., Illgner, K., Praefcke, W.: Embedded Laplacian pyramid still image coding using zerotrees. In: Proc. SPIE 2669, Still Image Processing II, San Jose, pp. 158–168 (1996)Google Scholar
  69. Namphol, A., et al.: Image compression with a hierarchical neural network. IEEE Transactions on Aerospace and Electronic Systems 32(1), 327–337 (1996)CrossRefGoogle Scholar
  70. Nguyen, T., Oraintara, S.: A shift-invariant multiscale multidirection image decomposition. In: Proc. IEEE International Conf. on Acoustics, Speech, and Signal Processing, France, pp. 153–156 (2006)Google Scholar
  71. Nuri, V.: Space-frequency adaptive subband image coding. IEEE Trans. on CAS -II: Analog and Digital Signal Processing 45(8), 1168–1173 (1998)CrossRefGoogle Scholar
  72. Olkkonen, H., Pesola, P.: Gaussian pyramid wavelet transform for multiresolution analysis of images. Graphical Models and Image Processing 58(4), 394–398 (1996)CrossRefGoogle Scholar
  73. Perry, S., Wong, H., Guan, L.: Adaptive image processing: a computational intelligence perspective. CRC Press, LLC (2002)Google Scholar
  74. Pratt, W.: Digital image processing. Wiley Interscience, New York (2007)CrossRefGoogle Scholar
  75. Rabbani, M., Jones, P.: Digital image compression techniques. Books, SPIE Tutorial Texts Series, vol. TT7. SPIE Opt. Eng. Press (1991) Google Scholar
  76. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Processing Magazin 6, 14–38 (1991)CrossRefGoogle Scholar
  77. Rosenfeld, A.: Multiresolution image processing and analysis. Springer, NY (1984)zbMATHGoogle Scholar
  78. Shapiro, J.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on SP 41(12), 3445–3462 (1993)zbMATHCrossRefGoogle Scholar
  79. Sigitani, T., Iiguni, Y., Maeda, H.: Image interpolation for progressive transmission by using radial basis function networks. IEEE Trans. on Neural Networks 10(2), 381–390 (1999)CrossRefGoogle Scholar
  80. Simoncelli, E., Freeman, W.: The steerable pyramid: A flexible architecture for multi-scale derivative computation  3, 444–447 (1995)Google Scholar
  81. Smith, M., Barnwell, T.: Exact reconstruction techniques for tree structured subband coders. IEEE Trans. on ASSP, ASSP-34, 434–441 (1986)CrossRefGoogle Scholar
  82. Strintzis, M., Tzovaras, D.: Optimal pyramidal decomposition for progressive multiresolutional signal coding using optimal quantizers. IEEE Trans. on Signal Processing 46(4), 1054–1068 (1998)CrossRefGoogle Scholar
  83. Special Issue on Image Compression, International Journal on Graphics, Vision and Image Processing (2007),
  84. Tan, K., Ghambari, M.: Layered image coding using the DCT pyramid. IEEE Trans. on Image Processing 4(4), 512–516 (1995)CrossRefGoogle Scholar
  85. Tang, X., Pearlman, W., Modestino, J.: Hyperspectral image compression using three-dimensional wavelet coding. In: Proc. SPIE, vol. 5022, pp. 1037–1047 (2003)Google Scholar
  86. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Processing 9, 1158–1170 (2000)CrossRefGoogle Scholar
  87. Todd, J.: The visual perception of 3D shape. Trends in Cognitive Science 8(3), 115–121 (2004)CrossRefGoogle Scholar
  88. Toet, A.: A morphological pyramidal image decomposition. Pattern Recognition Lett. 9, 255–261 (1989)zbMATHCrossRefGoogle Scholar
  89. Tzou, K.: Progressive image transmission: A review and comparison of techniques. Optical Eng. 26(7), 581–589 (1987)Google Scholar
  90. Topiwala, P.: Wavelet image and video compression. Kluwer Acad. Publ., NY (1998)Google Scholar
  91. Tanimoto, S.: Image transmission with gross information first. In: Computer,Graphics and Image Processing, vol. 9, pp. 72–76 (1979)Google Scholar
  92. Unser, M.: An improved least squares Laplacian pyramid for image compression. Signal Processing 27, 187–203 (1992)CrossRefGoogle Scholar
  93. Unser, M.: On the optimality of ideal filters for pyramid and wavelet signal approxi-mation. IEEE Trans. on SP 41 (1993)Google Scholar
  94. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 11, 22–38 (1999)CrossRefGoogle Scholar
  95. Vaidyanathan, P.: Quadrature mirror filter banks, M-band extensions and perfect re-construction technique. IEEE Trans. on ASSP 4, 4–20 (1987)Google Scholar
  96. Vaidyanathan, P.: Multirare systems and filter banks. Prentice-Hall, NJ (1993)Google Scholar
  97. Vazquez, P., Feixas, M., Sbert, M., Heidrich, W.: Automatic view selection using view-point entropy and its applications to image-based modeling. Computer Graphics Forum 22(4), 689–700 (2003)CrossRefGoogle Scholar
  98. Velho, L., Frery, A., Gomes, J.: Image processing for computer graphics and vision, 2nd edn. Springer, Heidelberg (2008)Google Scholar
  99. Vetterli, M.: Multi-dimensional sub-band coding: some theory and applications. Signal Processing 6, 97–112 (1984)MathSciNetCrossRefGoogle Scholar
  100. Vetterli, M., Uz, K.: Multiresolution coding techniques for digital television: A Review, Multidimensional systems and signal processing, vol. 3, pp. 161–187. Kluwer Acad. Publ. (1992)Google Scholar
  101. Vetterli, M., Kovačevic, J., LeGall, D.: Perfect reconstruction filter banks for HDTV representation and coding. Image Communication 2, 349–364 (1990)Google Scholar
  102. Wang, L., Goldberg, M.: Progressive image transmission by transform coefficient residual error quantization. IEEE Trans. on Communications 36, 75–87 (1988)CrossRefGoogle Scholar
  103. Wang, L., Goldberg, M.: Reduced-difference pyramid: A data structure for progressive image transmission. Opt. Eng. 28, 708–716 (1989)Google Scholar
  104. Wang, L., Goldberg, M.: Comparative performance of pyramid data structures for progressive image transmission. IEEE Trans. Commun. 39(4), 540–548 (1991)CrossRefGoogle Scholar
  105. Wang, D., Haese-Coat, V., Bruno, A., Ronsin, J.: Texture classification and segmentation based on iterative morphological decomposition. Journal of Visual Communication and Image Representation 4(3), 197–214 (1993)CrossRefGoogle Scholar
  106. Woods, J. (ed.): Subband image coding. Kluwer Acad. Publ., NY (1991)zbMATHGoogle Scholar
  107. Wu, J., Wu, C.: Multispectral image compression using 3-dimensional transform zerob-lock coding. Chinese Optic Letters 2(6), 1–4 (2004)Google Scholar
  108. Yu, T.: Novel contrast pyramid coding of images. In: Proc. of the 1995 IEEE International Conference on Image Processing, pp. 592–595 (1995)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Roumen Kountchev
    • 1
    Email author
  • Vladimir Todorov
    • 2
  • Roumiana Kountcheva
    • 2
  1. 1.Department of Radio Communications and Video TechnologiesTechnical University of SofiaSofiaBulgaria
  2. 2.T&K EngineeringSofiaBulgaria

Personalised recommendations