Paraconsistent Artificial Neural Networks and Pattern Recognition: Speech Production Recognition and Cephalometric Analysis

  • Jair Minoro AbeEmail author
  • Kazumi Nakamatsu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 29)


In this expository work we sketch a theory of artificial neural network, based on a paraconsistent annotated evidential logic E(. Such theory, called Paraconsistent Artificial Neural Network - PANN - is built from the algorithm Para-analyzer and has as characteristics the capability of manipulating uncertainty, inconsistent and paracomplete concepts. Some applications are presented in speech production analysis and cephalometrich variables analysis.


Artificial neural network paraconsistent logics annotated logics pattern recognition speech disfluence cephalometric variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, J.M.: Fundamentos da Lógica Anotada (Foundations of Annotated Logics), in Portuguese, Ph. D. Thesis, University of São Paulo, São Paulo (1992)Google Scholar
  2. 2.
    Da Silva Filho, J.I., Abe, J.M.: Para-Analyzer and Inconsistencies in Control Systems. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Soft Computing (ASC 1999), Honolulu, Hawaii, USA, August 9-12, pp. 78–85 (1999)Google Scholar
  3. 3.
    Da Silva Filho, J.I., Abe, J.M.: Paraconsistent analyzer module. International Journal of Computing Anticipatory Systems 9 (2001); ISSN: 1373-5411, ISBN: 2-9600262-1-7, 346-352Google Scholar
  4. 4.
    Da Silva Filho, J.I., Abe, J.M.: Fundamentos das Redes Neurais Paraconsistentes – Destacando Aplicações em Neurocomputação. In: Portuguese, Editôra Arte & Ciência, 247 (2001)Google Scholar
  5. 5.
    Dempster, A.P.: Generalization of Bayesian inference. Journal of the Royal Statistical Society Series B-30, 205–247 (1968)MathSciNetGoogle Scholar
  6. 6.
    Hecht-Nielsen, R.: Neurocomputing. Addison Wesley Pub. Co., New York (1990)Google Scholar
  7. 7.
    Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  8. 8.
    Kosko, B.: Neural Networks for signal processing. Prentice-Hall, USA (1992)Google Scholar
  9. 9.
    Sylvan, R., Abe, J.M.: On general annotated logics, with an introduction to full accounting logics. Bulletin of Symbolic Logic 2, 118–119 (1996)Google Scholar
  10. 10.
    Fausett, L.: Fundamentals of Neural Networks Architectures, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  11. 11.
    Stephens, C., Mackin, N.: The validation of an orthodontic expert system rule-base for fixed appliance treatment planning. Eur. J. Orthod. 20, 569–578 (1998)CrossRefGoogle Scholar
  12. 12.
    Martins, D.R., Janson, G.R.P., Almeida, R.R., Pinzan, A., Henriques, J.F.C., Freitas, M.R.: Atlas de Crescimento Craniofacial, Santos, São Paulo, SP (1998) (in Portuguese)Google Scholar
  13. 13.
    Mario, M.C.: Modelo de análise de variáveis craniométricas através das Redes Neurais Artificiais Paraconsistentes, Ph. D. Thesis, University of São Paulo (2006)Google Scholar
  14. 14.
    Sorihashi, Y., Stephens, C.D., Takada, K.: An inference modeling of human visual judgment of sagittal jaw-base relationships based on cephalometry: Part II. J. Orthod. Dentofac. Orthop. 117, 303–311 (2000)CrossRefGoogle Scholar
  15. 15.
    Steiner, C.: Cephalometrics for you and me. Am. J. Orthod. 39, 729–755 (1953)CrossRefGoogle Scholar
  16. 16.
    Jacobson, A.: Wits appraisal of jaw disharmony. Am. J. Orthod. 67, 125–138 (1975)CrossRefGoogle Scholar
  17. 17.
    Jacobson, A.: The application of the Wits appraisal. Am. J. Orthod. 70, 179–189 (1971)CrossRefGoogle Scholar
  18. 18.
    Ricketts, R.M.: Cephalometric analysis and synthesis. Angle Orthod. 31, 141–156 (1961)Google Scholar
  19. 19.
    Abe, J.M., Ortega, N., Mario, M.C., Del Santo Jr., M.: Paraconsistent Artificial Neural Network: an Application in Cephalometric Analysis. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 716–723. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Weinstein, J., Kohn, K., Grever, M.: Neural Computing in Cancer Drug Development: Predicting Mechanism of Action. Science 258, 447–451 (1992)CrossRefGoogle Scholar
  21. 21.
    Baxt, W.J.: Application of Artificial Neural Network to Clinical Medicine. Lancet 346, 1135–1138 (1995)CrossRefGoogle Scholar
  22. 22.
    Subasi, A., Alkan, A., Koklukaya, E., Kiymik, M.K.: Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks 18(7), 985–997 (2005)CrossRefGoogle Scholar
  23. 23.
    Russell, M.J., Bilmes, J.A.: Introduction to the special issue on new computational paradigms for acoustic modeling in speech recognition. Computer Speech & Language 17(2-3), 107–112 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate Program in Production EngineeringICET - Paulista UniversitySão PauloBrazil
  2. 2.Institute For Advanced StudiesUniversity of São PauloSão PauloBrazil
  3. 3.School of Human Science and Environment/H.S.E.University of HyogoHyogoJapan

Personalised recommendations