Advertisement

Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations

  • Jorge Corral
  • Daniel Calegari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7041)

Abstract

Agro-ecosystems are ecological systems subject to human interaction whose simulation is of interest to several disciplines (e.g. agronomy, ecology and sociology). The agent-based modeling approach appears as a suitable tool for modeling this kind of complex system, along with a corresponding agent-oriented software engineering (AOSE) methodology for the construction of the simulation. Nevertheless, existing AOSE methodologies are general-purpose, have not yet accomplished widespread use, and clear examples of applications to agro-ecosystems are hard to find. This article sets the ground for an AOSE methodology devised specifically for developing agro-ecosystem simulations. The methodology framework is based upon other general-purpose AOSE methodologies, and it relies on the Unified Modeling Language for an easy uptake from interdisciplinary teams. As a first proof of concept, it is applied to a real case study: the evolution of the strategies followed by cattle producers of the basalt-region of north Uruguay against severe draughts.

Keywords

Agro-Ecosystem Agent-Based Modeling Simulation Agent-Oriented Software Engineering Unified Modeling Language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cervenka, R., Trencansky, I.: The Agent Modeling Language - AML: A Comprehensive Approach to Modeling Multi-Agent Systems, 1st edn. (2007)Google Scholar
  2. 2.
    CORMAS (n.d.), http://cormas.cirad.fr
  3. 3.
    Corral, J., Arbeletche, P., Morales, H., Burges, J., Continanza, G., Courdin, V.: Multi-Agent Systems applied to land use and social changes in Rio de la Plata basin (South America). In: 8th European International Farming Systems Association, France (2008) Google Scholar
  4. 4.
    Corral, J.: Agent-based methodology for developing agroecosystem simulations. MSc thesis. Centro de Posgrados y Actualización Profesional, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay (2011), http://www.fing.edu.uy/inco/pedeciba/bibliote/cpap/tesis-corral.pdf
  5. 5.
    CSIRO. Complex or just complicated: what is a complex system? CSIRO fact sheet (2008), http://www.csiro.au/resources/AboutComplexSystems.html
  6. 6.
  7. 7.
  8. 8.
    Gliessman, S.R.: Agroecology: ecological processes in sustainable agriculture, Ann Arbor Press (1997)Google Scholar
  9. 9.
    Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented Methodologies. Idea Group, Hershey (2005)Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Le Page, C., Bommel, P.: A methodology for building agent-based simulations of common-pool resources management: from a conceptual model designed with UML to its implementation in CORMAS. In: Bousquet, F., Trébuil, G., Hardy, B. (eds.) Companion Modeling and Multi-Agent Systems for Integrated Natural Resource Management in Asia, pp. 327–349. IRRI, Metro Manila (2005)Google Scholar
  13. 13.
    Miller, J.H., Page, S.E.: Complex adaptive systems: an introduction to computational models of social life. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  14. 14.
    Morales, H., Arbeletche, P., Bommel, P., Burges, J.C., Champredonde, M., Corral, J., Tourrand, J.F.: Modéliser le changement dans la gestion des terres de parcours en Uruguay. Cahiers Agricultures 19(2), 112–117 (2010)Google Scholar
  15. 15.
    Norman, M.: Annual Cropping Systems in the Tropics. University Press of Florida, Gainnesville (1979)Google Scholar
  16. 16.
    OMG. The Unified Modeling Language Specification v2.0 (2005), www.uml.org
  17. 17.
    Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann, San Francisco (1991)Google Scholar
  18. 18.
    Tran, Q.N., Low, G.: MOBMAS: A methodology for ontology-based multi-agent systems development. Information and Software Technology 50, 697–722 (2008)CrossRefGoogle Scholar
  19. 19.
    Wooldridge, M.: Lecture Notes on Introduction to Multiagent Systems Course (2008), www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html
  20. 20.
    Wooldridge, M.: An Introduction to Multiagent Systems. Wiley & Sons, Chichester (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge Corral
    • 1
  • Daniel Calegari
    • 1
  1. 1.Instituto de Computación, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations