Advertisement

Object-Oriented Formal Modeling and Analysis of Interacting Hybrid Systems in HI-Maude

  • Muhammad Fadlisyah
  • Peter Csaba Ölveczky
  • Erika Ábrahám
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7041)

Abstract

This paper introduces the HI-Maude tool that supports the formal modeling, simulation, and model checking of interacting hybrid systems in rewriting logic. Interacting hybrid systems exhibit both discrete and continuous behaviors, and are composed of components that influence each other’s continuous dynamics. HI-Maude supports the compositional modeling of such systems, where the user only needs to describe the dynamics of single components and interactions, instead of having to explicitly define the continuous dynamics of the entire system. HI-Maude provides an intuitive, expressive, object-oriented, and algebraic modeling language, as well as simulation and LTL model checking with reasonably precise approximations of continuous behaviors for interacting hybrid systems. We introduce the tool and its formal analysis features, define its formal semantics in Real-Time Maude, and exemplify its use on the human thermoregulatory system.

Keywords

Model Check Hybrid System Body Core Linear Temporal Logic Physical Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Bevilacqua, V., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  3. 3.
    Dang, T.: Verification and Synthesis of Hybrid Systems. Ph.D. thesis, INPG (2000)Google Scholar
  4. 4.
    Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulating hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 204–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Fadlisyah, M., Ábrahám, E., Lepri, D., Ölveczky, P.C.: A rewriting-logic-based technique for modeling thermal systems. In: Proc. RTRTS 2010. Electronic Proceedings in Theoretical Computer Science, vol. 36 (2010)Google Scholar
  6. 6.
    Fadlisyah, M., Ábrahám, E., Ölveczky, P.C.: Adaptive-step-size numerical methods in rewriting-logic-based formal analysis of interacting hybrid systems. In: Proc. TTSS 2010 (2010), to appear in ENTCSGoogle Scholar
  7. 7.
    Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of hybrid systems in rewriting logic using higher order numerical methods and discrete-event detection. In: Proc. CSSE 2011. IEEE, Los Alamitos (2011)Google Scholar
  8. 8.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-toi, H.: Beyond HyTech: Hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Herman, I.: Physics of the Human Body. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lee, E., Zheng, H.: HyVisual: A hybrid system modeling framework based on Ptolemy II. In: IFAC Conference on Analysis and Design of Hybrid Systems (2006)Google Scholar
  13. 13.
    Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude. ENTCS 176(4), 5–27 (2007)zbMATHGoogle Scholar
  14. 14.
    Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ölveczky, P.C., Bevilacqua, V.: The Real-Time Maude tool. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Plantadosi, C.: The Biology of Human Survival: Life and Death in Extreme Environments. Oxford University Press, Oxford (2003)Google Scholar
  17. 17.
  18. 18.
    Wellstead, P.E.: Introduction to physical system modelling. Academic Press, London (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Muhammad Fadlisyah
    • 1
  • Peter Csaba Ölveczky
    • 1
  • Erika Ábrahám
    • 2
  1. 1.Department of InformaticsUniversity of OsloNorway
  2. 2.Computer Science DepartmentRWTH Aachen UniversityGermany

Personalised recommendations