Hybrid Specification of Reactive Systems: An Institutional Approach

  • Alexandre Madeira
  • José M. Faria
  • Manuel A. Martins
  • Luís S. Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7041)


This paper introduces a rigorous methodology for requirements specification of systems that react to external stimulus by evolving through different operational modes. In each mode different functionalities are provided. Starting from a classical state-machine specification, the envisaged methodology interprets each state as a different mode of operation endowed with an algebraic specification of the corresponding functionality. Specifications are given in an expressive variant of hybrid logic which is, at a later stage, translated into first-order logic to bring into scene suitable tool support. The paper’s main contribution is to provide rigorous foundations for the method, framing specification logics as institutions and the translation process as a comorphism between them.


Model Check Satisfaction Condition Institutional Approach Hybrid Logic Note Theor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areces, C., Heguiabehere, J.: Hylores: A hybrid logic prover based on direct resolution. In: Proceedings of Advances in Modal Logic, AiML 2002 (2002)Google Scholar
  2. 2.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of IGPL 8(3), 339–365 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Börger, E., Stärk, R.: Abstract state machines: A method for high-level system design and analysis. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  5. 5.
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theor. Comput. Sci. 285(2), 289–318 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Franceschet, M., de Rijke, M.: Model checking for hybrid logics (with an application to semistructured data). Journal of Applied Logic 4(3), 279–304 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hybrid logic. Electr. Notes Theor. Comput. Sci. 262, 127–139 (2010)CrossRefGoogle Scholar
  9. 9.
    Heitmeyer, C.L., Kirby, J., Labaw, B.G.: The SCR Method for Formally Specifying, Verifying, and Validating Requirements: Tool Support. In: ICSE, pp. 610–611 (1997)Google Scholar
  10. 10.
    Hoareau, C., Satoh, I.: Hybrid logics and model checking: A recipe for query processing in location-aware environments. In: AINA, pp. 130–137. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  11. 11.
    Hoffmann, G., Areces, C.: Htab: a terminating tableaux system for hybrid logic. Electr. Notes Theor. Comput. Sci. 231, 3–19 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lange, M.: Model checking for hybrid logic. J. of Logic, Lang. and Inf. 18(4), 465–491 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of reactive systems: An institutional approach (extended version). Technical Report CCTC-11-03, University of Minho (July 2011)Google Scholar
  14. 14.
    Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement by interpretation in a general setting. Electron. Notes Theor. Comput. Sci. 259, 105–121 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement via interpretation. In: Hung, D.V., Krishnan, P. (eds.) SEFM, pp. 250–259. IEEE Computer Society (2009)Google Scholar
  16. 16.
    Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Mossakowski, T.: Foundations of heterogeneous specification. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 359–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: CASL: The common algebraic specification language: Semantics and proof theory. Computing and Informatics 22, 285–321 (2003)zbMATHGoogle Scholar
  19. 19.
    Mossakowski, T., Maeder, C., Codescu, M., Lucke, D.: Hets user guide - version 0.97. Technical report, DFKI Lab Bremen (March 2011),
  20. 20.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. Electron. Notes Theor. Comput. Sci. 174, 63–77 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rodrigues, C.J., Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement by interpretation in π-institutions. EPTCS 55, 53–64 (2011)CrossRefGoogle Scholar
  23. 23.
    Sannella, D.: Algebraic specification and program development by stepwise refinement (Extended abstract). In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 1–9. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Tarlecki, A.: Abstract specification theory: An overview. In: Broy, M., Pizka, M. (eds.) Models, Algebras, and Logics of Engineering Software. NATO Science Series, Computer and Systems Sciences, vol. 191, pp. 43–79. IOS Press, Amsterdam (2003)Google Scholar
  25. 25.
    van Eijck, J.: Hylotab-tableau-based theorem proving for hybrid logics. Technical report, CWI (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre Madeira
    • 1
    • 2
    • 3
  • José M. Faria
    • 1
  • Manuel A. Martins
    • 3
  • Luís S. Barbosa
    • 2
  1. 1.Critical Software S.A.Portugal
  2. 2.Department of InformaticsMinho UniversityPortugal
  3. 3.Department of MathematicsUniversity of AveiroPortugal

Personalised recommendations